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Abstract

Despite QUIC handshake packets being encrypted, the Great
Firewall of China (GFW) has begun blocking QUIC connec-
tions to specific domains since April 7, 2024. In this work,
we measure and characterize the GFW’s censorship of QUIC
to understand how and what it blocks. Our measurements
reveal that the GFW decrypts QUIC Initial packets at scale,
applies heuristic filtering rules, and uses a blocklist distinct
from its other censorship mechanisms. We expose a critical
flaw in this new system: the computational overhead of de-
cryption reduces its effectiveness under moderate traffic loads.
We also demonstrate that this censorship mechanism can be
weaponized to block UDP traffic between arbitrary hosts in
China and the rest of the world. We collaborate with various
open-source communities to integrate circumvention strate-
gies into Mozilla Firefox, the quic-go library, and all major
QUIC-based circumvention tools.

1 Introduction

Since its standardization in 2021, QUIC has rapidly become
a major Internet protocol. It now serves as the cryptographic
basis of HTTP/3 [7] and in 2024, Cloudflare estimated that
over 30% of web requests use QUIC [14]. QUIC’s popular-
ity also poses a problem for censors, who must adapt their
previous techniques to the new protocol. While censors have
previously altogether blocked the protocol [25] [70 §5.2], for
the first time, user reports began to suggest that the Great
Firewall of China (GFW) had started blocking QUIC connec-
tions for specific domains [33] in April 2024, similar to their
SNI-based censorship of TLS traffic [11,37].

Censoring QUIC connections to specific websites is chal-
lenging at the state-level because QUIC encrypts all packets,
unlike TLS where the destination server name is sent in plain-
text. In QUIC, even the first handshake message, the QUIC
client Initial, is encrypted, albeit under a key that is derivable
by a passive network observer. This means that a censor that
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wants to block QUIC connections based on the Server Name
Indication (SNI) field needs to decrypt the first packet of ev-
ery QUIC connection to reveal the destination site. It is thus
important for the anti-censorship community to understand
the GFW’s new censorship design and implementation details
to update circumvention strategies.

In this work,' we measure China’s new capability to inspect
and block QUIC connections—the first nation-wide inspec-
tion and targeted censorship of QUIC. We confirm that China
is decrypting and inspecting the first packet in QUIC connec-
tions at scale. Through several experiments, we infer the rules
and high-level parsing logic of how the GFW processes QUIC
connections. For instance, we discover that the GFW ignores
QUIC packets with a source port lower than the destination
port, likely as an optimization to inspect client-only traffic.

We use traceroute-like measurements to show that the de-
vices responsible for QUIC censorship are co-located at the
same hop as existing GFW devices, indicating that they may
use shared infrastructure or have similar management. How-
ever, despite this proximity, we measure the set of domains
that trigger QUIC censorship, and find that the GFW’s QUIC
blocklist substantially differs from blocklists used for TLS,
HTTP, or DNS censorship in China. In particular, the QUIC
blocklist is roughly 60% of the size of the DNS blocklist in
terms of number of domains. Surprisingly, a large number of
these domains do not even support QUIC, making it unclear
why they ended up on a QUIC-specific censorship list.

We further demonstrate that China’s targeted QUIC cen-
sorship can be overwhelmed such that the GFW is not fully
able to censor QUIC connections. This reveals an exploitable
flaw in the GFW’s QUIC censorship where an attacker can
send a moderate number of QUIC Initial packets—even to
uncensored domains—and overwhelm the GFW such that
other QUIC connections to censored domains are blocked at
dramatically lower rates.

Finally, we show that the GFW’s QUIC censorship system
makes the whole country vulnerable to attack. We present
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an availability attack that weaponizes the QUIC censorship
mechanism to block any host in China from communicat-
ing over UDP with any foreign host. For example, this attack
could be used to block access to all DNS servers outside of the
country causing widespread Internet outages. We demonstrate
this attack against ourselves using our own servers around
the world, and show that a single spoofing machine can pre-
vent the majority of these hosts from communicating with
our vantage point in China. Because of the potential severity,
we disclose this vulnerability to China’s CERT. We conclude
with a discussion of implications for the censorship circum-
vention community and of the complex ethical considerations
of exploiting vulnerabilities against a harmful actor, the GFW.

2 Background and Related Work

QUIC Protocol. QUIC is a UDP-based network protocol
that was initially developed by Google [27] and later standard-
ized by the IETF as RFC 9000 [43] in 2021. QUIC is akin to
TLS but operates over UDP, reducing latency and enabling
browser-controlled congestion control. QUIC was adopted
to serve as the cryptographic basis of HTTP/3 [7] and in
2024, Cloudflare estimated that over 30% of web requests use
QUIC [14]. QUIC also poses a shift for the anti-censorship
community as it encrypts all packets to prevent tracking and
tampering by middleboxes [27 §3].

QUIC Client Initial. The first packet in a QUIC handshake
is the Client Initial packet. Since QUIC packets are encrypted
from the outset but a key exchange has not occurred, initial
packets are encrypted with a key derived from the Destination
Connection ID (DCID) and a version-specific salt [58]. Both
of these fields are sent in plaintext in the QUIC client initial
packet, allowing the server (and a passive network observer)
to decrypt the payload. As such, this protection does not
provide confidentiality or integrity against observing parties,
but protects against off-path spoofing attacks.

Once the payload of the initial packet is decrypted, it reveals
a set of one or more CRYPTO frames containing a TLS 1.3
Client Hello message that lists the cipher suites and TLS ex-
tensions supported by the client. Typically, one of these TLS
extensions will be the Server Name Indication (SNI), which
specifies the hostname the client is attempting to connect
to. Because initial keys can be computed by any network
observer, the TLS Client Hello and its plaintext contents, in-
cluding the SNI, can be decrypted.

QUIC Blocking. In 2021, Elmenhorst et al. found that while
many QUIC websites were not accessible in Iran and China,
it was not because of any SNI-based censorship. Instead,
it’s because Iran blocked UDP traffic to those QUIC end-
hosts [25 §5.2], and China blocked both TCP and UDP traffic
to those specific QUIC endhosts [25 §5.1]. Later, in March
2022, ValdikSS found that the Russian TSPU blocked all

QUIC connections that used QUIC version 1 (0x00, 0x00,
0x00, 0x01), were destined to port 443, and had a payload
size of at least 1001 bytes [70 §5.2] [63]. In December 2024,
Uzbekistan blocked QUIC connections with Encrypted Client
Hello (ECH) extensions [16]. To our best knowledge, China
initiated the blocking of QUIC connections based on the SNI
field in April 2024, making it the first and only country being
able to do so as of June 2025.

Other Censorship Mechanisms. The GFW employs mul-
tiple methods to implement its blocking policies, includ-
ing DNS poisoning [4, 6, 20, 29, 38], IP blocking [25, 66],
keyword-based filtering [11, 13,37], and active probing [2,
26] [66 §5] [65 §4.5] [22 §4.3]. For UDP-based DNS requests,
the GFW injects fake responses to queries for forbidden do-
mains. For HTTP(S) traffic, it performs stateful inspection
of TCP connections and injects forged RST packets upon
detecting censored domains in HTTP Host headers or TLS
SNI extension fields [67]. This is followed by a brief pe-
riod of “residual blocking,” primarily enforced via additional
forged SYN+ACK and RST injections, though recent work
has shown that packet dropping is also used [37 §5.4] [10].

3 QUIC Censorship Mechanism

In this section, we investigate how the GFW detects and
blocks QUIC connections to forbidden domains. We show
that the GFW blocks QUIC connections based on client Initial
SNI, regardless of the server IP address. The GFW inspects
the first packet in a UDP flow, and if it is a QUIC client Initial
containing a domain name on China’s QUIC-specific block-
list, the GFW drops subsequent packets from the client to
server for 3 minutes (Figure 1).

Experiment Setup and Vantage Points. We used a set of
vantage points inside and outside China for our experiments,
which allowed us to test connections bidirectionally over the
GFW. In total, we used seven vantage points in China: four in
Beijing, two in Guangzhou, and one in Shanghai. We chose
these regions in China since they are home to major Internet
Exchange Points (IXPs) where the GFW is known to be de-
ployed [52 §4.5] [36] [28 VI.C]. These vantage points were
provisioned through Tencent Cloud (AS45090) and Alibaba
Cloud (AS37963). Outside China, we utilized six vantage
points located in Singapore (AS16509), San Jose (AS14618),
San Francisco (AS14061), N. Virginia (AS14618), Cape
Town (AS16509), and a U.S. university (AS32).

We developed a custom QUIC client using Quiche [46]
that allows us to craft specific client Initial packets. As we
observed blocking to be triggered by clients’ packets regard-
less of server response, the servers in our experiments ran
tcpdump rather than a QUIC server. To ensure accurate mea-
surements and avoid interference, we configured iptables
rules on the servers to drop any outgoing ICMP packets di-
rected to the clients.
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Figure 1: Overview of QUIC SNI Censorship, including the
decision flow, initial packet decryption, SNI-based filtering,
and residual blocking rules triggered for flagged connections.

3.1 QUIC Connection Blocking

Upon observing a QUIC client Initial message with a forbid-
den SNI, the GFW drops all subsequent UDP packets sharing
the same source IP, destination IP, and destination port. We
discovered this behavior by sending QUIC client Initial mes-
sages from the three locations of our vantage points in China
to a server in the US. These messages used QUIC version 1,
and google. com in the SNI. We found that while the QUIC
client Initial messages reached our server, any subsequent
UDP packets in the connection from client to server were
dropped by the censor for 180 seconds.

During this time, if the client sent 10 byte random data
packets from even a different source port to the same server
endpoint (destination IP and port), these were dropped by the
GFW as well. However, random data packets sent to a new
destination port on the server were not blocked, indicating the
GFW blocks based on the 3-tuple (source IP, destination IP,
destination port) to prevent trivial circumvention attempts via
source port changes. As confirmed by having the server send
a Server Initial message along with additional UDP packets
carrying random 10-byte payloads after receiving the QUIC
client Initial message, we also observed that this blocking was
only client-to-server; server-sent packets were not dropped.

A Single Packet Triggers Residual Blocking. Unlike previ-
ously documented TLS-SNI censorship by the GFW [38 §3.1],
which requires the detection of at least two packets (SYN fol-
lowed by a PSH/ACK), the QUIC censorship mechanism can
be activated by a single QUIC client Initial packet contain-
ing a forbidden SNI. This is the first known instance of the
GFW implementing residual blocking via packet dropping
for a UDP-based protocol . While the GFW has historically
censored DNS traffic over UDP through spoofed packet in-
jections [4,6,38], it has not employed packet dropping as a

method of blocking for UDP-based protocols. This may be
because this type of censorship requires an in-path capability
to drop packets, compared to prior injection-only censorship
which can be accomplished with on-path techniques where
the censoring device only sees a copy of packets. The residual
packet-dropping behavior of the GFW also introduces a new
vector for availability attacks, where an attacker can use the
GFW to block communication between arbitrary hosts. We
explore this attack in Section 6.

Inconsistent Bidirectional Blocking. While our preliminary
experiments showed that traffic entering or exiting China
could trigger blocking, this behavior changed on September
30, 2024. Since then, inbound traffic to most of our vantage
points has no longer triggered blocking, with the exception of
traffic to Beijing and Guangzhou.

Blocking Latency. Our experiments show a brief delay be-
tween detection of a QUIC client Initial packet containing a
forbidden SNI and when the GFW begins to drop packets,
which allows several packets to reach the server. The fact
that GFW was not able to drop the QUIC client Initial with
forbidden SNI shows a level of on-path deployment of the
GFW [64 §2.1]. In combination with the in-path packet drop-
ping capability, we consider its deployment architecture to be
a hybrid of both on-path and in-path, which is similar to the
GFW’s blocking of TLS ESNI traffic [32].

To precisely measure this blocking delay, we adopted a
methodology similar to what used in a 2020 study that mea-
sured the delay in blocking of TLS traffic containing an
Encrypted Server Name Indication (ESNI) extension [32].
Specifically, we measured how long we continued to receive
subsequent packets after a triggering QUIC Initial packet.

We conducted a day-long experiment to determine the
GFW’s blocking latency for QUIC. From our vantage point
in Beijing, for the first five minutes of each hour, we initiated
25 UDP flows (unique source and destination ports) to a server
we controlled in Singapore. In each connection, we continu-
ously sent unique 10-byte payloads at a rate of 100 packets
per second. Five seconds into the experiment, we sent a QUIC
Initial packet with a forbidden SNI google. com to each of
the 25 destination ports corresponding to the ongoing connec-
tions, but from different source ports. These QUIC Initials
trigger the GFW to block each of the 25 destination ports (for
our client/server pair for any source port) such that the server
would stop receiving the 10-byte payloads.

On the server side, we captured packets and looked for
connections in which there was at least a 120-second gap
between UDP packets, indicating that the QUIC client Initial
successfully triggered censorship. For these connections, we
looked at the sending time on the client of the blocking QUIC
Initial and the last UDP payload the server received before the
censorship-induced gap. This represents the blocking latency
when packets were still allowed to pass the GFW immediately
following a censorship trigger to a 10 ms granularity.
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Figure 2: The CDF shows the distribution of the time taken by
the GFW to enact a blocking rule causing subsequent packet
drops. In over 90% of cases, the GFW blocks the connection
within one second. The observed blocking times range from
a minimum of 0.06 seconds to a maximum of 7.5 seconds.

Blocking latencies ranged 60 ms to 7.5 seconds (Figure 2).
Over 90% of connections were blocked within one second, but
there is a long tail that takes longer. We hypothesize that the
variable delay in blocking corresponds to the variable volume
of QUIC traffic the GFW must process (See Appendix A).
We explore exploiting this property in Section 5 to degrade
the performance of the GFW’s QUIC censorship.

3.2 Flow Tracking Logic

Unlike TCP, which has a clear three-way handshake that
marks the start of a new connection, UDP is connectionless
without any explicit transport layer handshake. This makes
it challenging for middleboxes to identify the beginning of a
new UDP flow. Although, QUIC connections can be traced
using Connection IDs (CIDs), we found that the GFW does
not use CIDs to track QUIC flows. Instead, it uses the UDP
4-tuple (source IP, destination IP, source port, destination port)
and employs a 60-second timeout for keeping state in its flow
tracking system. To learn this, we relied on the fact that the
GFW will only block a connection if the first packet in a
UDP flow is a QUIC client Initial message with a forbidden
SNI. If any other UDP packet precedes the Initial packet, the
connection will not be blocked.

From one of our Beijing vantage points, we sent a UDP
packet with a random 10-byte payload to a server in the U.S.
We then waited a variable delay before sending three QUIC
client Initial messages in the same connection as the 10-byte
random, each spaced one second apart. We repeated this ex-
periment, increasing the delay between the random payload
packet and client Initial packets by one second each itera-
tion, until we observed blocking (i.e. no packets received for
180 seconds).

Destination Port

Source Port

Figure 3: GFW exempts connections where the source port
of the QUIC Initial packet is equal to or lower than the desti-
nation port. The experiment was conducted on December 2,
2024, from a vantage point in Beijing, China.

We found that blocking occurred when the delay between
the first random payload and the client Initial packet reached
60 seconds implying that the flow initiated by the random
UDP payload was tracked for 60 seconds. The QUIC Initial
packets sent after this 60 second window triggered blocking,
indicating that the GFW had reset the state for the flow and
was treating the QUIC Initial packets as a new flow.

No UDP Reassembly. We found that the GFW does not re-
assemble QUIC Initial packets that are split across more than
one UDP datagram. This design choice may be reasonable at
the time of its deployment on April 7, 2024, considering that
there had been few QUIC clients sending large QUIC Initial
packets that do not fit in a typical UDP datagram. However, as
detailed in Section 7, since September 13, 2024 [1], Chrome
introduced a series of changes to its QUIC Initial packets,
making them too large to fit into a single UDP datagram.
These changes to the widely used browser render the GFW
less effective, as it can only block if the SNI extension appears
in the first UDP datagram.

3.3 Source Port Must Exceed Destination Port

We found that sending a QUIC client Initial packet with a
forbidden SNI to the server in the U.S. did not always trigger
blocking. To further investigate this behavior, we conducted
multiple experiments aimed at determining the specific rules
the censor uses to filter QUIC connections.
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Figure 4: Percentage of blocked QUIC connections over time for clients sending connections from three major cities in China to
a server in the US. The timestamps shown are in China Standard Time (CST, UTC+8) and span from November 15 to 22, 2024.

We selected a range of ports from 401 to 450 with a step
size of 1. We sent QUIC client Initial messages with SNI
google.com from our vantage point in Beijing to our U.S.
server, enumerating all possible source and destination port
pairs in the range. After sending each QUIC client Initial
message, we waited one second, then sent five additional
UDP packets—each with a unique 10-byte payload—spaced
one second apart. This process was repeated ten times, us-
ing a different destination IP address (from the /28 subnet
assigned to our server) in each iteration. We waited for five
minutes between iterations to avoid any residual blocking
from previous connections. For each port pairing, we then
recorded the number of connections that were successfully
received and the number that were blocked (i.e. no follow-up
UDP packets received).

As shown in Figure 3, the GFW does not block connections
where the source port number is less than or equal to the
destination port number. However, blocking is not uniform,
which suggests variability in how consistently connections
are blocked. We also conducted the same experiment for the
full range of ports (1 to 65535) with a step size of 1,000
and found this filtering rule to be consistent across all ports
(Appendix B).

The GFW Limits the Number of Connections to Inspect.
The censor applies this heuristic port checking rule to limit the
number of connections it needs to inspect. Since most clients
will choose a (high) ephemeral port” and connect to lower
well-known port numbers (e.g., 443), the GFW can discard
likely server-to-client traffic by ignoring packets that have a
source port lower than destination port.

Two questions arise when the censor employs this rule: 1)
how much traffic does the censor quickly rule out? 2) how
many QUIC client Initials does the censor miss? To evaluate
the efficiency and false negative rate of this rule, we collected
UDP flows from a tap in a US university and analyzed the
distribution of source and destination port numbers.

Table 1 shows the distribution of QUIC client Initial packets
(Inits) and UDP datagrams based on source and destination

2Linux hosts typically use an ephemeral port range of 32768 to 60999,
while macOS and Windows Vista or later use the range 49152 to 65535. [56]

ports, observed on a tap in a US university between 8:00 and
9:00 local time (Pacific Standard Time, UTC-8), on January
22, 2025. The censor only processes a packet where UDP
sport > dport, meaning they capture more than 90% of all
QUIC client Initial packets, while looking up flow table for
only 30% of all UDP packets. The actual percentage of UDP
payloads attempted for decryption is even lower: as detailed
in Section 3.2, the GFW only parses the payload of the first
UDP datagram in a flow, defined as a five-tuple (source IP,
destination IP, source port, destination port, UDP protocol),
that has not been seen in the last 60 seconds.

QUIC Client Inits | UDP datagrams
sport > dport | 6.7M  (92.3%) 3.7B  (29.8%)
sport < dport | 0.6 M (7.6%) 84B (68.0%)
sport =dport | 4.6 K (0.06%) | 27.7M (2.2%)

Table 1: Distribution of packet counts based on source and des-
tination ports, observed on a tap in a US university between
8:00 and 9:00 local time (Pacific Standard Time, UTC-8),
on January 22, 2025. The censor only further considers flow
tracking if a UDP header has sport > dport, making it possi-
ble to capture more than 90% of all QUIC client Initials while
looking up flow table for only 30% of all UDP packets.

3.4 Diurnal Blocking Pattern

The variability in Figure 3 indicates that connections are not
consistently blocked and that blocking is non-deterministic.
To explore this, we ran a week-long experiment from different
vantage points to observe the frequency of QUIC connection
blocking throughout the day and across all destination ports.
We used our three locations in China to establish a connection
to a U.S.-based server. We sent a 1,000 concurrent probes
(i.e. a QUIC client Initial packet containing SNI google . com,
followed by 1 second delay and 5 subsequent UDP packets
containing unique 10-byte payloads, every 5 seconds from
our three China vantage points to 10 IPv4 addresses and
all ports of our server in the U.S.) In all cases, we ensured
that the source port was greater than the destination port



Table 2: Traceroute results identifying GFW’s UDP censor-
ship points: path to devices performing QUIC and DNS block-
ing, including the final uncensored hop from three different
client locations.

City Hops Away Blocking Hop - 1 Blocking Hop
(QUIC/DNS) (ISP/AS) (ISP/AS)
Shanghai 9/9 ChinaNet Shanghai ~ ChinaNet Backbone
Province Network (AS4134)
(AS4812)

China Unicom
Backbone (AS4837)

China Unicom
Backbone (AS4837)

ChinaNet Guangdong ChinaNet Backbone
Province Network (AS4134)
(AS4134)

Beijing ~ 12/12

Guangzhou 11/11

per Section 3.3. We mark a connection as censored if none of
the 10-byte follow-up UDP payload packets are received by
the server, after the QUIC client Initial. We then calculate the
percentage of blocked connections by aggregating the data
for each hour for each client location.

Blocking Rate Is Influenced by the Time of the Day. As
can be seen in Figure 4, there is a clear diurnal pattern across
all three cities, with blocking percentages peaking during
early morning hours and dropping to the lowest levels dur-
ing the day. Beijing consistently shows the highest levels of
blocking, followed by Shanghai and Guangzhou. This pattern
suggests that the blocking rate is influenced by the Internet
usage patterns in China, with the highest blocking rates ob-
served during periods of low network traffic.

We hypothesize that this behavior occurs because the GFW
can only handle a limited volume of traffic at any given time.
The operational cost of decrypting QUIC Initial packets is sub-
stantial at scale, making the blocking rate sensitive to network
load, which varies during the day. Diurnal patterns of blocking
have also been observed in prior studies on GFW’s keyword
filtering and DNS injection mechanisms [15 §3.2] [4 §7],
suggesting computational limitations that render the GFW
less effective during peak hours. We note that this becomes
increasingly relevant in the context of QUIC connections, as
parsing QUIC traffic is computationally expensive compared
to other plaintext protocols like HTTP and DNS. In Section 5,
we present further evidence that increasing the number of
QUIC Initial packets past the GFW can overwhelm it, leading
to a degradation in its censorship effectiveness.

3.5 Locating the Censorship Devices

We performed an incremental IP TTL measurement to lo-
cate the censorship devices. We set a fixed IP TTL value in
the QUIC client Initial messages, starting from 1 and incre-
menting by 1 in each experiment. In the first second of each
experiment, we sent 10 QUIC client Initial messages with

Success Rate (%) of QUIC-like Payloads per Source -> Destination Pair
Beijing 1 -> Capetown
Beijing 1 -> N. Virginia
Beijing 1 -> San Francisco
Beijing 1 -> San Jose
Beijing 2 -> Capetown
Beijing 2 -> N. Virginia
Beijing 2 -> San Francisco
Beijing 2 -> San Jose
Guangzhou -> Capetown -
Guangzhou -> N. Virginia -
Guangzhou -> San Francisco
Guangzhou -> San Jose
Shanghai -> Capetown
Shanghai -> N. Virginia -
Shanghai -> San Francisco
Shanghai -> San Jose
Capetown -> Beijing 1
Capetown -> Beijing 2
Capetown -> Guangzhou -
N. Virginia -> Beijing 1
N. Virginia -> Beijing 2
N. Virginia -> Guangzhou
San Francisco -> Beijing 1
San Francisco -> Beijing 2
San Francisco -> Guangzhou
San Jose -> Beijing 1

Source -> Destination

San Jose -> Beijing 2
San Jose -> Guangzhou

5 7
Payload Number

Figure 5: Percentage of blocked QUIC-like packets for each
experiment run. For each payload, we created 20 connections
and measured how many were received by the destination
host. Each payload, described in Table 3, tests a modification
to the standard QUIC client Initial and provides insight into
the parsing logic of the GFW QUIC censor.

the SNI of google. com to port 53 of our server in the US,
ensuring that the blocking would be triggered as long as it
reaches the censor. After 5 seconds, we then sent 100 UDP
datagrams with the same 4-tuple as the QUIC client Initial
message. The payload of these UDP packets consisted of 10-
bytes that included the encoded TTL value used in the QUIC
client Initial packets. We inferred if a QUIC Initial message
reached the censor by observing if the 100 UDP datagrams
were dropped. This measurement was performed from three
vantage points in China: Beijing, Shanghai, and Guangzhou,
with each experiment repeated 10 times.

As shown in Table 2, we found the QUIC blocking is not
triggered until the IP TTL value is 9, 11, and 12 for our clients
Shanghai, Beijing and Guangzhou, respectively. The hop trig-
gering the blocking is located in the backbone network of
ChinaNet for Shanghai and Guangzhou, and in the backbone
network of China Unicom for Beijing.

Similarly, we sent DNS queries for google . com using the
same 4-tuple with incrementing IP TTLs to port 53 of the
server, We observed that DNS injection was not triggered
until the IP TTL value matched those observed for QUIC
blocking, suggesting that the new devices are co-located at
the same hop as the existing GFW devices.

3.6 QUIC Parsing Idiosyncrasies

The GFW’s QUIC censorship does not strictly follow the
QUIC specifications [43,58] in several ways. We crafted and
sent several modified QUIC payloads that should be rejected
by RFC-compliant implementations, to see if they would still



Exp. No. Descriptions of the Tested QUIC Initial Packets

Blocked? Degrades?

1 Packet number is one-byte. v v
2 Remove last byte from QUIC packet. X v
3 Bad version number with incorrect auth tag. Version Number: 0x00000002. X X
4 Both connection IDs have a length of 0x00. v v
5 Source connection ID has a length of 0x255. X v
6 CRYPTO frame has a length of 0x00 but still contains a payload. v v
7 Sensitive domain in an extension other than the SNI extension (e.g. ALPN contains google . com). X v
8 QUIC payload contains a single CRYPTO frame along with multiple PING and PADDING frames. X v
9 A QUIC Initial packet whose TLS Client Hello contained an Encrypted Client Hello extension with X v
an outer SNI of cloudflare-ech.com.
10 A QUIC Version 2 packet. X X

Table 3: Description of each experiment we run to characterize the GFW’s QUIC parsing mechanism. For each, we mark if the
payload is ever observed to be blocked (Section 3.6), and if it can be used to degrade the GFW (Section 5).

trigger the GFW’s censorship. If they do, it indicates that
the GFW does not properly ignore non-compliant QUIC pay-
loads, potentially presenting an opportunity for circumven-
tion methods or other vulnerabilities. Our modified QUIC
payloads are described in Table 3, and Figure 5 shows the
results of sending these over the GFW. For each payload, we
sent 20 connections in both directions—from vantage points
in China to servers outside the country, and vice versa—to
determine whether they would trigger censorship.

No Need for Padding. While the QUIC specification re-
quires that Initial packets must be padded to a minimum of
1200 bytes, we found that the GFW does not enforce this re-
quirement. We were able to trigger censorship with payloads
as small as 137 bytes. However, since the GFW does not
inject responses, there is not a risk of amplification attacks.

Length Field Ambiguity. Connection ID lengths are defined
in the specification to be between 8 and 20 bytes; however,
the field supports lengths up to 255 bytes. We find that setting
both source and destination connection IDs to a length of
0x00 (too short) is blocked, though this should be ignored
as per the specification. On the other hand, a length of Oxff
is not blocked, indicating that the GFW correctly checks the
upper limit. Curiously, we find that the GFW will block a pay-
load even if the CRYPTO frame has a specified length of 0x00,
as long as the actual payload contains a forbidden SNI. The
GFW appears to assume the CRYPTO frame length from the
rest of the payload, meaning it cannot correctly handle split
CRYPTO frames (such as used by Google Chrome browsers).

Version Specific Blocking. Only QUIC version 1 packets
containing the plaintext byte pattern 0x00000001 in the ver-
sion field are subject to blocking. The recently standardized
QUIC version 2 [21], which uses a different salt value for
initial encryption keys, remains unblocked. This suggests the
GFW either has not updated its filtering mechanisms for new
version salt values or relies on version 1-specific plaintext
byte pattern matching for packet inspection.

4 Monitoring the Blocklist over Time

In this section, we investigate the websites that are blocked by
the GFW’s QUIC-SNI censorship mechanism. We consider
currently blocked sites, how the blocklist has changed over
time, and how the QUIC blocklist compares to blocklists used
by other censorship methods like TLS-SNI, HTTP, and DNS.
As noted in Section 3.4, the GFW’s QUIC censorship mech-
anism is non-deterministic, which requires an experimental
methodology that minimizes false negatives. For each name
that we test, we send QUIC client Initial messages carrying
the SNI from several vantage points and repeat the process
over multiple trials. Additionally, to avoid inaccuracies from
residual censorship on a specific destination port, we do not
send connections to the same 3-tuple (source IP, destination
IP, destination port) within any 180 second window.

We monitor the GFW’s QUIC blocklist over a period of
more than three months. Because of the inconsistency in
bidirectional blocking—specifically, that most of our van-
tage points stopped experiencing bidirectional blocking af-
ter September 30, 2024—we adopted an inside-out measure-
ment approach. We deployed ten vantage points in Beijing
(AS45090) to run the client-side script and a vantage point
in a US university (AS32) for the server. The server was as-
signed a /28 IPv4 subnet. For each name to test, the client
sends a QUIC client Initial message to the server, waits for
one second, and then sends 5 unique 10-byte UDP payload
packets spaced 1 second apart. We mark an SNI as blocked if
none of the follow-up UDP payload packets are received.

We use the full Tranco list (ID: 664NX) * obtained on
October 2, 2024, which consists of approximately seven mil-
lion fully qualified domain names (FQDNs) for testing. We
acknowledge that this list may not exhaustively capture all
censored names. However, we argue that a reasonably large
list of popular names provides a representative sample of the
GFW'’s QUIC blocklist.

3The list available at: https://tranco-list.eu/list/664NX/full
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Figure 6: Number of FQDNs blocked by the GFW’s QUIC
SNI censorship for the full Tranco list (ID: 664NX), between
October 8, 2024 and January 15, 2025. The number of blocked
domains are aggregated weekly. The bar chart shows weekly
churn in the blocklist over time.

In each test, for each name, each of the ten client vantage
points in Beijing sends a QUIC client Initial message to a
distinct IP address of our US server. Based on our finding
in Section 3.3, we always use source ports greater than des-
tination port to trigger blocking. We run these experiments
as cronjobs between 3 AM and 6 AM CST. This is because
we observed the highest rate of blocking during these hours
(Section 3.4).

Since the blocking rate during this time is observed to be
at least 50% for our connections, we repeat each QUIC client
Initial test ten times to ensure that the accuracy of our blocklist
extraction is above 1 — (1 — 50%)10 =99.9%. On the server
side, we aggregate the data for each SNI that is blocked for
each day. These experiments have been running for over three
months, starting from October 8, 2024, to January 15, 2025.

QUIC Blocklist. On a weekly basis, we found that the GFW
blocked an average of 43.8K FQDNs from the Tranco list
(Figure 6). Over the full duration of our experiments, we
observed that the GFW blocked 58,207 unique FQDNs from
the Tranco list (Table 4).

Fully Qualified Domain Name Count
Total Tested (Tranco List) 6,955,968
Supporting QUIC 1,489,967
Ever Blocked over QUIC 58,207
Blocked & Supporting QUIC 38,451

Table 4: Number of Fully Qualified Domain Name (FQDNs)
supporting QUIC, blocked by QUIC-SNI censorship, and their
intersection. QUIC censorship test was conducted between
October 8, 2024 and January 15, 2025.

Domains Blocked Over QUIC May Not Support QUIC.
We tested domains for QUIC support by making direct
HTTP/3 requests rather than relying on Al1t-Svc headers,
because some servers support HTTP/3-over-QUIC with-
out advertising it. From our measurements, we identified

58,207 FQDNs that were blocked over QUIC, of which
38,451 actually support HTTP/3-over-QUIC (see Table 4).
Within this larger set of blocked names, 9,345 popular second-
level domains (e.g., google. com, hrw.org, youtube. com,
tiktok.com) were found blocked, although only 3,233 of
them actually support QUIC. Notably, a substantial num-
ber of googlevideo.com subdomains (35,443) appeared on
the blocklist, suggesting a broader blocking rule targeting
*.googlevideo. com and resulting in an increase the num-
ber of QUIC-supporting domains. Since not all QUIC-blocked
domains actually support QUIC, it is difficult to determine
the exact logic behind the GFW’s blocklist. The GFW may
be blocking these domains preemptively, anticipating poten-
tial future QUIC support or it may be using other criteria
unrelated to QUIC for its blocking decisions.

4.1 Comparison with Other Blocklists

We conducted a comparative analysis of the GFW’s QUIC-
SNI blocklist against other established GFW censorship mech-
anisms, including TLS-SNI, HTTP Host, and DNS-based
blocking. To evaluate TLS-SNI blocking, we employed a
methodology based on prior work [11,37]. We established
a client in Beijing and a sink server in the U.S. to perform
inside-out measurements, maintaining consistency with our
QUIC-SNI blocking analysis. Our sink server was configured
to accept TCP connections but not respond with any data. In
each test, after completing the TCP handshake, the client trans-
mitted TLS Client Hello messages containing test domain
SNI values. We monitored the connection for TCP RSTs pack-
ets—a characteristic signature of SNI blocking. For HTTP
Host testing, we applied a similar approach but replaced the
TLS Client Hello with HTTP GET requests containing the
test domain in the Host header field.

For DNS censorship testing, we followed established
methodologies from previous research [6,38]. We configured
our Beijing-based client to send DNS queries to a controlled
US-based IP address where no DNS server was running. This
configuration allowed us to definitively attribute any received
DNS responses to GFW injection, as our server was con-
figured to ignore all queries. To ensure consistent compari-
son across all three testing methods (TLS-SNI, HTTP Host,
and DNS), we utilized domains from the same Tranco list.
We performed these measurements and collected blocklisted
domains over a one-week period from January 9, 2025, to
January 15, 2025.

Figure 7 illustrates the overlap between the blocklists for
TLS-SNI, HTTP Host, DNS, and QUIC protocols. For our
tested Tranco list domains, DNS blocking affected the largest
number of domains (106,973), followed by HTTP (105,488)
and HTTPS (102,216). The QUIC blocklist was notably
smaller, containing approximately 55 percent the number of
domains compared to the other three blocklists. Among the
58,207 domains that were ever blocked over QUIC, 11,854
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Figure 7: Venn diagram showing the overlap between the
blocklists for HTTPS, HTTP, DNS, and QUIC. The blocklists
for each protocol are aggregated over a period of 1 week from
January 9, 2025 to January 15, 2025.

were exclusively blocked through this protocol. Notably, of
these QUIC-exclusive blocked domains, we found only 2,329
domains that actually supported QUIC.

We found 40,447 domains common to all four blocklists,
representing a 24.4% overlap (measured as intersection di-
vided by union). When comparing QUIC blocking against the
other three protocols individually, we found the highest over-
lap (intersection over union) with HTTPS at 46,251 domains
(40.51%), followed by HTTP with 43,191 domains (35.84%),
and DNS with 41,484 domains (33.54%). These findings in-
dicate that each censorship mechanism operates with distinct
but overlapping blocklists, creating a complementary system
that maximizes the GFW’s censorship coverage. For instance,
an HTTP/3-over-QUIC browsing session in a modern browser
typically starts with a DNS query, followed by request over
HTTP/2 (or earlier) and then upgrades to HTTP/3 over QUIC.
The GFW’s censorship strategy is designed to affect each
stage either exclusively or in combination, ensuring that the
user is unable to access the forbidden content on the web.

Table 5 shows the Jaccard Index (Intersection over Union)
of the GFW’s blocklists for DNS-, HTTP-, TLS-, and QUIC-
based censorship of the Tranco Top 10k, alongside web-
sites supporting QUIC, and a randomly selected sample of
500 FQDN:Ss.

S GFW Degradation Attack

In Figure 4, we observed that the GFW’s QUIC censorship
was less effective during times corresponding to high traffic
volume in China. This led us to hypothesize that the GFW’s ef-
fectiveness could be purposefully degraded by sending QUIC
packets that the GFW would need to process. While our ex-

DNS HTTPTLS QUIC Support Sample

QUIC 500
DNS S .
HTTP 057 - - - - -
TLS 067 043 - - - -
QUIC 0.19 020 0.26 - -

Support QUIC 0.19 0.20 0.13 0.05 - -
Sample 500 0.03 0.03 0.03 0.01 0.05 -

Table 5: The Jaccard Index (Intersection over Union) of the
GFW?’s blocklists for DNS-, HTTP-, TLS-, and QUIC-based
censorship of the Tranco top 10k, alongside websites sup-
porting QUIC, and a randomly selected sample of 500 fully
qualified domain names (FQDNSs).

periments provide valuable insights into the design of China’s
censorship system, they also raise several ethical concerns
which we carefully considered and discuss in Section 9. We
designed our experiments to ensure that users and other Inter-
net devices were not impacted, and specifically ensured our
tests only degraded the GFW.

In this experiment, we use three vantage points. The first
is in China (Beijing, Alibaba, AS37963) which we refer to
as ChinaVP, the second is in the US (East, Digital Ocean,
AS14061) which we refer to as USVP, and the third is in
a research institution in the US (University of Michigan,
AS36375) which we refer to as StressVP. Our goal is to mea-
sure the effectiveness of the GFW’s QUIC censorship in the
presence of moderate volumes of QUIC traffic. This exper-
iment consists of two parts that are run simultaneously: a
measurement part and a stressing part.

In the measurement part, we configure our three vantage
points to do the following: the ChinaVP sends a QUIC Initial
packet (267 bytes of payload) containing a forbidden domain
name, namely google. com in the SNI field, to USVP where
the destination port is less than the source port (to trigger
censorship as shown in Section 3). After a 1-second pause,
we send 100 UDP packets in the same flow containing a fixed
innocuous payload of 1,111 bytes. This process is repeated
for 1000 different source-destination port pairs. We mark
a connection as permitted (evaded censorship) if the server
(USVP) receives the QUIC Initial packet and 95% or more of
the packets that follow.

In the stressing part, we use the StressVP to send two types
of traffic in varying sending rates (from 100kpps to 1500kpps,
in 100kpps increments for seven minutes each and spaced by
a three-minute pause) towards the [Pv4 addresses in the /14
network prefix in which the ChinaVP is hosted. Our goal is to
send enough traffic to stress the GFW without impacting the
network link or routers. By choosing a large network to send
over, the impact of our traffic is diluted for individual hosts.
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Figure 8: We stress-test the GFW by sending two types of
equal-length packets at 0—1500 Kpps: QUIC Initial packets
containing a forbidden SNI (Censored Stressing) and UDP
packets containing a random payload (Random Stressing).
We measure the effectiveness of QUIC censorship during this
test by sending (at a fixed rate) QUIC Initial packets followed
by 100 data packets, mimicking 1000 QUIC connections from
a vantage point in China to a vantage point in the US and cal-
culating the fraction of connections the GFW fails to censor
(Censored Traffic). The GFW is less effective at censoring our
measurement QUIC connections as we increase the number
of QUIC Initial packets we stress-test with, increasing the dif-
ficulty on the GFW to process QUIC packets. We ensure our
test impacts only the GFW and not the network by measuring
the rate of uncensored QUIC traffic (Egress/Ingress Control
Traffic) to and from both vantage points during our test.

Furthermore, to avoid having our stressing packets reach
end-hosts, we estimate the hop-distance between the IPs in
the /14 and StressVP. We run TTL-limited DNS scans us-
ing ZMap to resolve example.com on the entire /14. We
approximate the hop-distance of each IP from StressVP by
the cessation of DNS resolutions we receive from the 164
DNS servers in the /14. We then set our TTL value for our
stressing packets we send from the StressVP to one less than
the smallest (closest) hop-distance DNS server in the /14.

During the stressing part, we send two types of (TTL-
limited) traffic past the GFW: QUIC Initial packets, and UDP
packets with a fixed payload generated at random. For QUIC
packets, we use the same QUIC Initial payload sent between
ChinaVP and USVP containing a forbidden SNI to trigger the
GFW’s censorship. For the random payload we use innocu-
ous bytes with the same length as the QUIC payload. We use
ZMap [23] to send each of these payloads and configure the
sending rate such that we send on average no more than 6 pps
to each IP in the /14.

Our experiment consists of sending (TTL-limited) QUIC
Initial packets from our StressVP to the /14 of ChinaVP. This
is repeated three times on different days, once in an ascending
order and twice in a shuffled order of sending rates. Simulta-
neously, we measure from ChinaVP to USVP the fraction of
permitted connections. We then repeat the experiment three
times (not coinciding with QUIC stressing), but send a ran-
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dom payload instead of QUIC Initial packets and measure the
fraction of permitted connections. Figure 8 shows the impact
of our experiment (averaged) on the GFW. As we increase the
rate of QUIC Initial packets, the GFW is less able to censor
connections between ChinaVP and USVP. We also do not
see this pattern when sending random payloads, meaning that
the degradation is only due to processing QUIC payloads,
and not due to network volume degrading the network, as
further supported by our network monitoring. Note that all
the experiments were conducted in the early morning hours in
China, during which the GFW is more effective at censoring
QUIC traffic (see Figure 4).

Network Monitoring. While we run our experiment, we
monitor the network between ChinaVP and USVP in two
ways. First, we send uncensored QUIC connections in both
directions, and monitor the fraction of packets received by
both ends. Second, we use ZMap to scan the /14 network on
tcp/443 at a slow rate (650 pps), and measure the response
rate in the network. If either of these metrics decreases signif-
icantly during our experiments, it may be due to a saturated
network link, indicating we must halt the experiment. Since
we never observed a decrease in either metric during our ex-
periments, we believe our experiments had negligible impact
on networks and devices beyond the GFW.

Reverse Engineering. In addition to helping users evade
censorship, the degradation attack is also helpful in under-
standing the GFW’s processing. For example, if a particular
QUIC payload can be used to degrade the GFW’s censorship
effectiveness, we know it has been processed at some level
by the GFW, even if that same payload is not blocked. On the
other hand, if a payload has no influence on the GFW, then it
is likely discarded prior to a computationally expensive step.

Table 3 shows if each payload was successful in degrading
the GFW’s effectiveness to censor. We tested this by send-
ing each payload at 1200 Kpps, and observing if the fraction
of permitted censored connections exceeded 60%, indicating
that the payload had an impact on the GFW. These results sug-
gest the GFW processes all payloads with the default QUIC
version, and that even payloads that do not decrypt or have
invalid authentication tags can degrade the GFW. However, a
valid tag is necessary to trigger censorship, implying that the
“slow” part of the GFW is likely the cryptographic operations
in decrypting the payload.

6 Availability Attack

Prior work has shown that residual censorship can some-
times be “weaponized” by attackers to conduct availability at-
tacks [8,9]. In this type of attack, attacker sends a censorship-
triggering request to Destination B, spoofing the source IP
address to be from Victim A. If the request triggers residual
blocking in a firewall between A and B, then the two hosts
will be unable to communicate, as the firewall believes that



Victim A sent a forbidden request. Residual censorship is
commonly on the order of 1-3 minutes [9-11,37,64,66], and
an attacker can simply spoof additional triggering packets
during or after the residual censorship expires to keep the
victim and destination blocked.

Our study represents the first known instance of the GFW
implementing residual blocking for a UDP-based protocol.
While the GFW has historically censored DNS traffic over
UDP through spoofed packet injections, it has not employed
packet dropping as a method of blocking for UDP-based pro-
tocols. However, the GFW’s new QUIC blocking mechanism
employs packet-dropping in a way that introduces a new vec-
tor for availability attacks, impacting all of China. In particu-
lar, an attacker could use this availability attack to block UDP
connections from hosts inside China from communicating
with servers outside. For example, this attack could block
all open or root DNS resolvers outside of China from be-
ing accessed from within China, leading to widespread DNS
failures in the country.

In this section, we investigate the practicality of this attack
by performing it against our own hosts and servers.

Attack Setup. This attack requires the ability to spoof IP
packets, which requires a server that is not limited by egress
filtering. We obtained such a host from a public VPS provider,
and verified that we can spoof IP packets and have them re-
ceived within China. Inside China, we used a VPS under our
control in Guangzhou, as this host experienced QUIC censor-
ship both incoming and outgoing, meaning clients from out-
side China connecting to this server also experienced QUIC
censorship. To simulate “victim” hosts, we acquired an AWS
EC2 instance in each of the 32 regions that AWS operates in
outside of China.

For each EC2 instance, we sent a DNS query to our VPS in
Guangzhou. We then measured if this request was received by
our VPS, indicating that the connection was initially available.

Next, from our attack machine capable of spoofing packets,
we spoofed ten censored QUIC client Initial packets for each
EC2 instance to our VPS in China. These packets are designed
to trigger the GFW’s residual censorship, between the EC2
instances’s IP address and the IP:Port of the VPS in China.
The path that these packets take to the VPS in China may
differ significantly from the path that packets from the EC2
machine would take, meaning they may pass different GFW
nodes, rendering the attack ineffective. We sent these spoofed
packets every second.

Meanwhile, we measured the attack effectiveness from
each EC2 instance, sending a DNS request to the VPS in
China every five seconds. If the residual censorship was active
on the path between instance and VPS, the request would be
blocked, indicating a successful availability attack.

Table 6 and Figure 9 show the locations of the EC2 in-
stances and the effects of the attack. Over half (17) of the 32
EC2 instances were heavily impacted by our attack. While
some packets still get through for heavily impacted hosts,

11

Figure 9: The map shows the locations of the EC2 instances
that were affected by the availability attack. Hosts that are
most affected are shaded in red, while hosts that are less
affected are shaded in green. The black point in China is the
location of the victim server and the black point in the US is
the location of the spoofing attack server.

we find this is largely due to the timing of when the 3-
minute residual censorship expires. When it does, there is
up to one second before the next spoofing packet arrives to
reblock the instance. Sending faster or timing with the expira-
tion improves the blocking rate. We also observed that seven
hosts were affected approximately half the time, indicating
that there may be multiple network paths between a given
instance and VPS, and only some of those paths experienced
the residual censorship.

The remaining eight instances were not affected at all,
largely in the Pacific region, suggesting that the spoofing
location did not share a network path with these hosts. We
confirm that all 32 hosts were capable of triggering censor-
ship when the censored QUIC client Initial packet was sent
directly from the real client.

Defense. Defending against this attack while still censoring
is difficult due to the stateless nature and ease of spoofing
UDP packets. One potential mitigation approach involves
only triggering censorship after detecting a corresponding
QUIC Server Hello and later client packets, ensuring that
the connection is live and not being spoofed from one end.
However, this approach has significant limitations. First, it ne-
cessitates stateful tracking of connections, which imposes sub-
stantial overhead on middleboxes. Furthermore, the inherent
challenges of asymmetric routing—where the client-to-server
(C2S) and server-to-client (S2C) paths differ—complicate
the feasibility of accurately tracking connections. If the paths
are asymmetric, a middlebox might fail to observe the Server
Hello entirely, potentially leaving the connection uncensored
and vulnerable to exploitation. Finally, an attacker could still
spoof both sides of the connection to trigger the blocking,
making it an ineffective defense.

Alternatively, the censor may employ an injection-based
blocking mechanism, avoiding packet-dropping based resid-
ual censorship. However, this approach also has risks and
constraints. For instance, with the current latency associated
with decryption (shown in Figure 2), a QUIC Server Initial



Continent/Region City/Area # Packets Received % of 360
Africa Cape Town 110  30.56%
Asia Pacific Hong Kong 360 100.00%
Asia Pacific Hyderabad 13 3.61%
Asia Pacific Jakarta 360 100.00%
Asia Pacific Malaysia 360 100.00%
Asia Pacific Melbourne 360 100.00%
Asia Pacific Mumbai 360 100.00%
Asia Pacific Osaka 145 40.28%
Asia Pacific Seoul 246  68.33%
Asia Pacific Singapore 360 100.00%
Asia Pacific Sydney 360 100.00%
Asia Pacific Thailand 360 100.00%
Asia Pacific Tokyo 229  63.61%
Canada Calgary 26 7.22%
Canada Central 13 3.61%
Europe Frankfurt 244 67.78%
Europe Ireland 16 4.44%
Europe London 12 3.33%
Europe Milan 17 4.72%
Europe Paris 10 2.78%
Europe Spain 15 4.17%
Europe Stockholm 14 3.89%
Europe Zurich 17 472%
Israel Tel Aviv 18 5.00%
Mexico Central 13 3.61%
Middle East Bahrain 201  55.83%
Middle East UAE 22 6.11%
South America  Sao Paulo 12 3.33%
US East N. Virginia 195 54.17%
US East Ohio 21 5.83%
US West N. California 21 5.83%
US West Oregon 19 5.28%

Table 6: Shows how many packets were received by the server
from each AWS region. The availability attack ran for 30
minutes and a packet was sent by the real client every five
seconds. The spoofing server was in the U.S. and the victim
server was in Guangzhou, China. For each AWS host, the
attack server sent ten spoofed QUIC client Initial packets,
each in a new connection, every second.

could reach the client and establish a shared secret, before the
injected packet arrives, rendering the injection ineffective.

Defending against this attack is uniquely challenging in
QUIC, because the protocol is designed to resist injection-
based teardown attacks, motivating the need for residual cen-
sorship. At the same time, the connectionless nature of UDP
makes spoofing the client Initial trivial, opening the door for
availability attacks when residual censorship is employed.
Careful engineering will be needed to allow censors to apply
targeted blocks in QUIC, while simultaneously preventing
availability attacks.
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7 Circumvention

As described in Section 3.2, the GFW makes several simplify-
ing assumptions to efficiently parse and block QUIC traffic at
line speed. These design choices again demonstrate that the
designers and developers of the GFW follow the “worse-is-
better” philosophy [31]. Such assumptions come at the cost
of reducing the censorship system’s accuracy and robustness,
which opens up opportunities for circumvention. We respon-
sibly disclosed circumvention strategies we identified to the
anti-censorship and open-source communities.

Use Source Port <= Destination Port. As detailed in Sec-
tion 3.4, the GFW focuses on client-to-server traffic by ig-
noring UDP datagrams whose srcport <= dstport. A stop-
gap solution to bypass this blocking is to use destination
ports that are higher than or equal to the source port. For
the case of circumvention proxies, one may run the server
on a port higher than or equal to the client’s ephemeral
port range. Web services could also be run on non-standard
higher ports, and provide these to web clients via A1t-Svc
fields in HTTP headers or via DNS HTTPS records. An
easy and application-independent way to listen on a higher
port is to use iptables rules to redirect all traffic sent to a
higher port (e.g. 65535) to the current listening port (e.g.
443) using iptables -t nat -A PREROUTING -p udp
--dport 65535 -j REDIRECT --to-port 443. This is
especially useful for software that cannot change its listening
port or cannot listen on multiple ports.

Precede QUIC Client Initial With Any UDP Datagram.
The GFW’s QUIC censorship mechanism relies on the as-
sumption that the QUIC client Initial is the first packet in a
new flow. A simple way to bypass this is to precede the client
Initial with a UDP datagram with a random payload. For a
real QUIC server, the first UDP datagram will be ignored, but
the GFW will not be able to parse the SNI value from the
first packet and exempt the flow. The subsequent client Initial
packets will not be inspected and the connection will be es-
tablished. We confirmed this defense works against the GFW
to exempt connections from blocking by sending a UDP data-
gram with random payload before the QUIC client Initial. We
also tested against the Chromium Quiche [35] QUIC server
implementation to verify it ignores random UDP payloads.

Connection Migration. QUIC’s connection migration ca-
pability leverages connection IDs to maintain sessions across
network changes. The GFW employs a selective filtering strat-
egy: it permits the initial QUIC packet but blocks subsequent
packets from client to server, while not monitoring connec-
tion IDs. Since server-to-client packets remain unblocked,
clients that complete 1-RTT handshakes before the blocking
is activated and then migrate to a different network 4-tuple
(source IP, source port, destination IP, destination port) can
bypass the GFW.



A related approach is presented in QUICstep [44], which
introduces a connection migration technique designed to cir-
cumvent QUIC censorship. This method exploits QUIC’s
connection migration capability by performing the QUIC
handshake over a secure channel, which may have low band-
width and high latency. After successfully completing the
handshake, the connection migrates to a regular communica-
tion channel so that all data is fully encrypted.

QUIC Client Initial Fragmentation. A QUIC client Initial
message can be sent either as multiple UDP datagrams or as
a single UDP datagram containing multiple QUIC frames.
As of January 2025, the GFW does not reassemble a TLS
Client Hello when it is split across multiple UDP datagrams
or fragmented into multiple QUIC frames within a single UDP
datagram. This behavior can be leveraged to circumvent the
GFW’s QUIC censorship by splitting the SNI across multiple
QUIC CRYPTO frames in the client Initial message.

Notably, Chrome’s Chaos Protection mechanism [19], in-
troduced in 2021, disperses the QUIC client Initial message
into multiple QUIC frames that are shuffled across the UDP
datagrams. Additionally, Chrome (since version 124 [12])
supports post-quantum key agreement in TLS 1.3, that en-
ables the use of ML-KEM and Kyber keys. Enabling this
feature fragments the QUIC client Initial into multiple UDP
datagrams due to the larger key size exceeding the maxi-
mum QUIC packet size. These features happen to exploit the
GFW'’s inability to reassemble fragmented QUIC client Ini-
tial packets, allowing Chrome packets to bypass the GFW’s
QUIC censorship.

Encrypted Client Hello (ECH). ECH [51] allows a client to
encrypt part of their TLS Client Hello message to a server with
a key obtained via DNS HTTPS record. The SNI extension
is thus encrypted, allowing a client to hide it from a censor.
Unlike QUIC’s client Initial encryption, ECH encryption is
asymmetric and cannot be decrypted by a network observer.

A censor could choose to block all ECH-containing pay-
loads. However, modern browsers have started to send
“dummy” ECH payloads in TLS, even when a server does
not support it. As of January 2025, the GFW does not block
QUIC payloads that contain ECH, unless the outer (decrypt-
able) SNI is to a blocked domain.

Version Negotiation. QUIC’s version negotiation [43 §6]
mechanism presents an interesting circumvention opportunity.
This process typically begins when a server receives an Initial
packet with an unsupported version number. In response, the
server sends a Version Negotiation packet and waits for the
client to submit a new Initial packet using a supported version.
A client can strategically exploit this mechanism by delib-
erately sending an Initial packet with an unknown version,
making the payload of the first packet undecryptable. As a
result, subsequent packets in the connection flow are able
to bypass the GFW’s filtering mechanisms. The client can
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then proceed with the handshake using a supported version,
effectively circumventing the censorship measures.

Are “Stopgap” Solutions Worth Deploying? While many
of these solutions opportunistically exploit implementation
details in the GFW, it may not be trivial for China to patch all
of these, due to resource constraints and other priorities [5].
In past work, we have seen similar stopgap solutions work for
multiple years against censors [66 §8.3]. On the other hand,
many of these circumvention strategies can be easily deployed
by QUIC-using proxies and circumvention tools, who do not
face the same kinds of bureaucratic constraints [5].

Responsible Disclosure. We shared our findings on China’s
QUIC censorship and the circumvention strategies with the
anti-censorship and open-source communities. In specific,
we contacted the developers of Mozilla Firefox [48], Mozilla
Neqo library [49], quic-go library [53], Lantern [18], Hyste-
ria [39], TUIC [59], sing-box [54], V2Ray [61], and Xray [68].

The SNI-slicing feature (implemented through client Ini-
tial Fragmentation) was included in the Neqo v0.12.0 release
on January 27, 2025 [24, 50]. Mozilla Firefox has since in-
tegrated this feature and shipped it as a default feature in
version 137 on April 30, 2025 [24, 47] (configurable via
the network.http.http3.sni-slicing parameter in the
about:config page).

Table 7: Integration timeline for quic-go v0.52.0 [53]. Fol-
lowing its release on May 23, 2025, popular circumvention
tools updated their dependency, which enables SNI slicing by
default to bypass GFW’s QUIC SNI-based censorship.

Project  Version Release Date

sing-box  1.12.0-beta.17 May 22, 2025 [55]
V2Ray 5.33.0 May 26, 2025 [62]
Xray 25.6.8 June 6, 2025 [69]
Hysteria 2.6.2 June 7, 2025 [40]

The quic-go library introduced SNI-slicing in its v0.52.0
release [53] on May 23, 2025 [53]. As summarized in Table 7,
this update allows circumvention tools that depend on quic-go
to bypass the GFW’s QUIC SNI-based censorship.

As of June 2025, we are working with the Mozilla Neqo
and Firefox team to integrate a complementary circumvention
technique (prepending dummy payload before the handshake)
in Mozilla Firefox for more resilience against the GFW [72].

8 Discussion

Our findings raise two crucial questions about the GFW’s
blocking of QUIC connections: (1) its impact on regular
web traffic, and (2) its implications for QUIC-based prox-
ying. When accessing websites, browsers will first connect
to servers using HTTP(S)-over-TCP, and only attempt to use



QUIC if the server announces to support it (via the Alternate
Service header). Consequently, the HTTP Host-based and
TLS SNI-based blocking are still the primary mechanisms for
blocking web traffic, and only when a website is not censored
by these two mechanisms will the GFW’s QUIC blocking
come into play. The GFW’s QUIC blocking essentially acts
as a secondary censorship mechanism for web traffic.

Focusing on QUIC-based proxies, the growing popularity
of tools like Hysteria [39] and ongoing standardization ef-
forts—particularly by the IETF’s MASQUE [41] working
group—shows the protocol’s future potential for VPNs and
proxies. QUIC’s flow-controlled and multiplexed streams,
rapid connection establishment, and support for connection
migration offer significant performance gains. By using un-
prompted authentication in HTTP/3 servers, QUIC tunnels
can reside in mainstream HTTP/3 traffic and potentially elude
detection even through active probing. However, our results
show that the GFW’s SNI-based filtering undermines these ad-
vantages early in the handshake process, effectively blocking
many QUIC proxies at the outset.

A clear example is Cloudflare’s WARP VPN, which re-
cently started using MASQUE [17] (HTTP/3-over-QUIC
proxying) to tunnel traffic. We discovered that the subdo-
main used for MASQUE was blocked by the GFW, disrupting
the VPN client’s startup handshake. This pattern signals an
explicit targeting of MASQUE proxies by the GFW. Similarly,
Hysteria faces a situation where not only its main project do-
main v2.hysteria.network is blocked, but users’ custom
domains used for Hysteria proxies are also blocked.

9 Conclusion

In response to the GFW’s QUIC SNI-based censorship from
April 7, 2024, we conducted measurement experiments to
characterize, monitor, expose, and bypass it. We show this
new blocking mechanism can be exploited to block arbitrary
UDP traffic between hosts inside and outside China. We also
propose an off-path circumvention strategy which reduces
the GFW’s effectiveness with moderate traffic loads. We col-
laborate with various open-source communities to integrate
circumvention strategies into Mozilla Firefox, the quic-go
library, and all major QUIC-based circumvention tools.
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Ethics Considerations

There are two major ethical considerations in our work: the
potential harm of our experiments on network infrastructure
and the disclosure of uncovered weaknesses.

Availability Attack. In Section 6, we demonstrated that
the GFW could be co-opted to conduct an availability attack
against arbitrary Internet hosts. We demonstrated this attack
against our own servers to limit the risk of unforeseen col-
lateral harm during our experiments. While the attack does
involve spoofing IP packets, the only IP addresses we pre-
tended to be were under our control already. The result of this
attack is that for a brief duration, our own EC2 instances were
unable to communicate with our server in China.

We also analyze our work under the lens of two ethical
frameworks suggested by prior work on computer security
and ethics [45]. From a consequentialist ethical perspective,
there is negligible risk of harm from this attack. From a de-
ontological view, the choice of attacking only our own hosts
limits the involvement of others, and thus our duty to others.



GFW Degradation Attack. In Section 5, we introduced
a method to degrade the GFW’s ability to block QUIC con-
nections by sending a large number of QUIC Initial packets.
There are several risks associated with this experiment that in-
fluenced our experiment design. First, we considered whether
it is morally justified to disrupt the GFW, a system that is itself
a source of harm [28 §9.c] [28 §9.B] [3,42], as acknowledged
even by its creators [71 §1]. On the one hand, the GFW is not
a system we control and disrupting it could have negative or
unseen consequences. On the other hand, causing the GFW
to fail to censor provides a benefit to Chinese users, as their
Internet is otherwise restricted in opposition to their human
rights [60]. These considerations led us to conclude that as
long as the risk to systems beyond the GFW was minimal,
disrupting the GFW itself was morally justified.

However, it is vitally important to consider the risk to other
systems. For example, if disrupting the GFW caused all traffic
to be dropped, our experiment would risk interfering with nor-
mal Internet communications between China and the rest of
the world. Indeed, while our analysis in Section 3.1 suggests
that the GFW’s QUIC censorship is not purely in-path, we
still worried that its in-path element might impact all traffic.
However, our observation of the diurnal pattern of censorship
effectiveness gave us strong evidence that this was not the
case. During the day when QUIC connection volumes are
high, the GFW is able to block only a small fraction of con-
nections (Figure 4), but uncensored QUIC and other types of
traffic remain unaffected.

Finally, we considered the risk that our experiments could
disrupt the network itself. Since we send a large number of
QUIC packets, there was the possibility of overwhelming a
network link or destination. We took several steps to mitigate
this risk. First, we limited our sending rate to 1.5 million pack-
ets/second, which consumes under 4 Gbps of bandwidth. We
confirmed that our connection to upstream Internet providers
was at least 40 Gbps, and transnational links are typically
100 Gbps or multi-Tbps, meaning our traffic would be only a
small fraction of their capacity. Second, we limited the TTL of
packets to ensure that they would pass the GFW but not reach
the destination network. This approach limits the impact to
only large core Internet links which can easily handle this
relatively minor traffic volume. Third, we continuously mon-
itored several health metrics across the networks we tested,
including ZMap scans and bidirectional connectivity tests.
We observed no network degradation during our experiments,
indicating that we did not overwhelm the network.

From a deontological perspective [60 §4.1], we must con-
sider the rights of others (e.g. Internet users in China), as
well as our intentions during the study. From this view, our
research methodology confronts a direct conflict between two
moral duties. On the one hand, we are obligated to avoid (po-
tentially) interfering with the network resources of others. On
the other hand, our experiments also fulfill a duty to prevent
an ongoing harm: namely, the censorship of the GFW. We
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argue that the latter constitutes a higher moral imperative and
thus decide to proceed with our experiments. From a conse-
quential perspective [60 §4.1], we must weigh the benefits
against the harms. The benefits are that our attacks reveal a
way to restore users’ access to information, while minimizing
the risk of harm to other networks and hosts.

Disclosure. Vulnerability disclosure is a standard practice
for ethical security research, as it helps improve the system
under study and to protect individuals impacted by the vulner-
able system from attacks. In our case, disclosure is ethically
complex because we are studying a system that would be
harmful to improve (the GFW). On the other hand, it is im-
portant to protect Internet users that may be subject to attacks
through vulnerabilities in the GFW. We carefully considered
what—if any—vulnerabilities to disclose to protect users, but
not improve the GFW’s ability to censor. Our goal is to maxi-
mize benefits by protecting users, while minimizing the risk
of harm in “helping” China strengthen their censorship.

Given these considerations, we decided to disclose the avail-
ability attack (Section 6) to the censor, as it can be used to
harm users. On Jan. 22, 2025, we disclosed this vulnerability
to CNCERT and Fang Binxing—widely recognized as “the
father of the GFW” [34]—and recommended that the vulnera-
ble QUIC censorship device be removed. A copy of the email
is included in Appendix C. To ensure clarity, we contacted
the censors via an email in both English and Chinese, and
provided links to two private webpages (one in each language)
that detailed the attack. Although we did not receive any re-
sponse or formal acknowledgment, we observed a total of
37 visits to the private English webpage (and none to the Chi-
nese version) between Jan. 24 and Feb. 24, 2025, suggesting
that our message was received. This lack of direct engagement
from CNCERT shows the challenge of vulnerability disclo-
sure with Internet censors [9 § VIII]. Chinese authorities rarely
admit the existence of censorship [57], let alone acknowledge
its risks or consider dismantling their censorship systems.

However, starting Mar. 13, 2025, we observed a change
in the GFW’s behavior: QUIC traffic originating from out-
side China could no longer trigger the blocking. This change
partially mitigates the vulnerability, as the availability attack
can no longer be launched from outside China. It’s unclear
whether this change was due to our disclosure, though a simi-
lar change has been observed in the past following a public
disclosure of the GFW’s ESNI censorship [10].

Despite the mitigation, the availability attack remains vi-
able if launched within China. An attacker operating a ma-
chine in China (without egress filtering) can still block arbi-
trary UDP flows between a host in China and any destination
outside China, if the attacker’s network path traverses the
same GFW node as the victim’s. Since the Chinese censor
is unlikely to remove the QUIC censorship devices, which is
the only way to fully mitigate this vulnerability, our risk miti-
gation strategy centers on public transparency. By publishing
this paper, we hope to disclose and publicize the vulnerability



to raise broader awareness about the security implications and
potential harms of large-scale censorship systems [28].

We chose not to inform the censor directly about the degra-
dation attack (Section 5). Instead, we first privately disclosed
the vulnerability to anti-censorship communities, followed by
a public disclosure with this paper’s publication. We chose
this disclosure strategy because the degradation attack affects
only the GFW’s infrastructure, not users. A private disclosure
to the censor would have afforded them an opportunity to
strengthen their censorship mechanisms before the broader
anti-censorship community could become aware of and learn
from this vulnerability.

While publicizing this vulnerability might motivate the cen-
sor to fix a weakness they likely already knew existed (now
knowing others are also aware), we believe the value of this
public disclosure outweighs such risks. By sharing these in-
sights on the censor’s weaknesses with a broader audience, we
can better inform future protocol designs and anti-censorship
strategies. For example, the QUIC Initial packet is designed
to be encrypted, despite being decryptable by middleboxes,
partly to complicate their ability to process it. The GFW’s
QUIC censorship system struggled to keep pace with the de-
cryption, demonstrating that even design choices that slightly
raise the processing cost can still reduce a censor’s overall
effectiveness [5].

No Collection of PII. Our work does not involve human
subjects, and we did not collect any personally identifiable
information (PII) in any of our data.

Open science

To encourage future work and maintain reproducibility, we
have publicly released the code and data from our study.
For broader accessibility, this paper is also available in
HTML format in both English and Chinese. The project
homepage is at: https://gfw.report/publications/
usenixsecurity25/en/.
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A Blocking Latency Across the Day

Figure 10 shows how the GFW’s blocking latency varies
across the day. Blocking latencies are the time taken for the
GFW to block a connection after observing a QUIC Initial
packet with a blocked SNI. It is measured as the time dif-
ference between the time the client sends the QUIC Initial
packet and the time the client sends the first UDP datagram
that gets dropped by the GFW.

The minimum blocking latencies are consistently below
100 ms during the day, likely bounded by the GFW’s internal
processing and reaction speed.

The maximum blocking latencies vary throughout the day,
potentially influenced by the number of QUIC connections
being processed by the GFW (as also hinted in Section 5).
During periods of generally lower human activity, typically
in the early morning hours (12 AM to 6 AM), it takes rel-
atively less time for the GFW to block connections, with a
mean blocking latency of approximately 150 ms. In contrast,
during peak human activity hours (7 AM to 11 PM), the mean
blocking latency can go up to 800 ms, with a max blocking
latency of 7,000 ms observed at around 3 PM.
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B Port-based Traffic Filtering

To further confirm our findings from Section 3.3 regarding the
GFW’s filtering heuristic based on the source and destination
ports, we extended our analysis to a wider range of ports.
Using the same methodology, we examined a wider range of
ports, from 1 to 65535, with a step size of 1,000. We also
included the port 65535 in our test and analysis.

Figure 11 illustrates the GFW’s blocking behavior across
this expanded port range. These results corroborate our initial
findings: the GFW does not track or block UDP flows if the
source port of the QUIC Initial packet is less than or equal to
its destination port.
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Figure 10: The box plot shows the distribution of the time
taken for the GFW to block a connection. The x-axis is in
log scale. The green triangle marks the mean value; and the
whiskers shows the minimum and maximum values.

Destination Port

Figure 11: The censor does not track or block UDP flows if
the source port of the QUIC Initial packet is less than or equal
to its destination port. This rule applies to all port numbers,
ranging from 1 to 65535.
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C Vulnerability Disclosure Email to the Censors

As introduced in Section 9, we decided to disclose the availability attack (Section 6) to the censor, as this attack may exploit the
GFW to cause additional harm to users. On January 22, 2025, we sent out the following email to CNCERT/CC and Fang Binxing
who has been widely known as “the father of the GFW” [34]. We recommended removing the vulnerable QUIC censorship
device and deploying egress filtering to prevent IP spoofing attacks. We wrote this email in both English and Chinese, and
provided links to two private webpages, one in English and one in Chinese, with details of the attack. Although we did not
receive any response or formal acknowledgment, we observed a total of 37 visits to the private English webpage (and zero visits
to the Chinese one) between 2:04 PM (UTC+8) on Friday, January 24 and 9:35 AM (UTC+8) on Monday, February 24, 2025.

SUBJECT: Disclose a Vulnerability in the GFW’s QUIC Filtering

Mechanism
FROM: gfw.report <gfw.report@protonmail.com>
TO: CNCERT/CC <cncert@cert.org.cn>
CC: Fang Binxing <fangbx@iie.ac.cn>

DATE: Thu, 23 Jan 2025 12:01:46 +0000

Dear CNCERT Team,

We are writing to disclose a vulnerability introduced by the QUIC
filtering mechanism deployed on the backbone network in China,
active since at least April 7, 2024. This vulnerability allows a
network attacker capable of spoofing IP packets, to use the Great
Firewall of China (GFW) to disrupt or block communication between
hosts inside and outside of China for an extended period.

Below we introduce the details, impact, and mitigation of this
vulnerability. We also maintained an up-to-date version at:
[The URL to the English responsible disclosure page redacted.]

## Vulnerability Details

An attacker can send a QUIC Initial packet (see below example)
with an SNI on the firewall’s blocklist (e.g., google.com) to a
specific IP:port pair, triggering the GFW’s residual censorship
for approximately 180 seconds. If the attacker spoofs the source
IP address to that of a victim inside China, this mechanism can
be exploited to block the victim’s IP address from connecting to
the specified server IP:port for three minutes. Similarly, one
can spoof the source IP address to be a victim server outside
China, and send to a range of ports of a victim IP address in
China. By repeatedly sending spoofed QUIC Initial packets, the
attacker can sustain the block indefinitely.

When the firewall’s censorship is triggered, it blocks based on
three-tuple (source IP, destination IP, destination UDP port) for
3 minutes (180 seconds). Censorship can be triggered with a single
UDP packet (see example below) containing a QUIC Initial packet
with an SNI on the firewall’s blocklist (e.g., google.com). Nor-
mally, this will only block between a client attempting to connect
and the server. However, because the blocking can be triggered
from a single UDP packet, a network attacker that can spoof IP
packets can easily trigger the firewall into blocking other hosts.

For example, suppose there is a host in China at 19.89.5.35, and a
DNS server outside China at 4.2.2.1 on UDP port 53. If an attacker
sends a UDP packet (such as provided below) from 19.89.5.35:x (for
any source port x) to 4.2.2.1:53, this will trigger the firewall
to block 19.89.5.35 from sending any packets to 4.2.2.1:53 for

3 minutes. The attacker can continue to spoof packets from
different source ports to extend the block indefinitely.

## Impact

The development and deployment of the GFW, along with this
identified issue, poses a severe risk to users in China and has
the potential to disrupt communications on a large scale. For
instance, it could be exploited to block significant portions of
UDP-based DNS traffic between DNS resolvers in China and
external networks, causing widespread connectivity issues.

To demonstrate the impact this attack could have, we conducted an
experiment using 32 Amazon EC2 instances globally distributed. We
ran the attack for 30 minutes, sending a DNS request from each
EC2 instance to a VPS we control in Guangzhou. At the same time,

a non-egress filtering box in the US spoofed packets from each EC2
IP to the Guangzhou box with a QUIC Initial packet containing an
SNI from the firewall’s blocklist. The map below shows which

boxes were affected with just a single spoofing vantage point.
Points in green experienced no connectivity issues, while points
in red struggled to successfully send requests to the Guangzhou
host. The black point in Guangzhou shows the location of our
testing victim server and the black point in the US shows the
location of our spoofing server.

## Mitigation

Due to the potential harm from this attack, we urge

taking immediate action to address this issue. As UDP is a
connectionless protocol, it is difficult to prevent spoofing
attacks. Therefore, the most complete mitigation against this
attack is to disable the censorship middlebox responsible for
blocking UDP connections. In addition to enabling these
harmful attacks, the GFW also violates human rights by
preventing access to information.

A less complete mitigation is to deploy egress filtering to
prevent IP packet spoofing, but as long as an attacker can

find one location where they can spoof packets, even outside
of China, this attack will still be feasible. Given this, we
recommend 1) immediately and permanently disabling the QUIC
censorship national firewall and 2) deploy protections such
as egress filtering to edge networks to limit IP spoofing.

Thank you for your attention to this critical matter. We remain
available to provide additional technical details or answer
follow up questions to ensure this issue is addressed promptly.

Sincerely,
Team

[The Chinese translation of the email above redacted.]
[The URL to the Chinese responsible disclosure page redacted.]
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