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ABSTRACT
Shadowsocks is one of the most popular circumvention tools in
China. SinceMay 2019, there have been numerous anecdotal reports
of the blocking of Shadowsocks from Chinese users. In this study,
we reveal how the Great Firewall of China (GFW) detects and blocks
Shadowsocks and its variants. Using measurement experiments,
we find that the GFW uses the length and entropy of the first data
packet in each connection to identify probable Shadowsocks traffic,
then sends seven different types of active probes, in different stages,
to the corresponding servers to test whether its guess is correct.

We developed a prober simulator to analyze the effect of differ-
ent types of probes on various Shadowsocks implementations, and
used it to infer what vulnerabilities are exploited by the censor. We
fingerprinted the probers and found differences relative to previ-
ous work on active probing. A network-level side channel reveals
that the probers, which use thousands of IP addresses, are likely
controlled by a set of centralized structures.

Based on our gained understanding, we present a temporary
workaround that successfully mitigates the traffic analysis attack by
the GFW. We further discuss essential strategies to defend against
active probing. We responsibly disclosed our findings and sugges-
tions to Shadowsocks developers, which has led to more censorship-
resistant tools.

CCS CONCEPTS
• Social and professional topics→ Censoring filters.
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Figure 1:Howactive probingworks. A genuine Shadowsocks
client connects to a Shadowsocks server; Once the GFW pas-
sively determines that the connectionmay be Shadowsocks,
it directs its active probers to confirm this guess.

1 INTRODUCTION
Shadowsocks is a protocol for Internet censorship circumvention,
especially popular in China. According to a research survey in July
2015, of 371 faculty members and students from Tsinghua Univer-
sity, 21% used Shadowsocks to bypass censorship in China [29,
§4.1]. The popularity of Shadowsocks stems from its simplicity. Its
lightweight design imposes minimal overhead on proxied traffic
and makes it easy to implement on a variety of platforms. A large,
profit-incentivized proxy reseller market, as well as numerous tuto-
rials and one-click installation scripts, have reduced the difficulty
of installing and using Shadowsocks, and made it popular even
among non-technical users.

Since as early as October 2017, users in China have reported
their Shadowsocks servers becoming unreliable or being blocked
by the Great Firewall (GFW), especially during politically sensitive
times [21]. The most recent such event happened in mid-September
2019, with Shadowsocks users reporting a sudden increase in block-
ing [17]. Section 2.2 summarizes past blocking events. Despite the
anecdotal evidence that the GFW is capable of detecting and block-
ing Shadowsocks servers, little is known about how the GFW actu-
ally does it. The importance of Shadowsocks in censorship circum-
vention, and the mysterious behavior of the GFW, motivate us to
explore and understand the underlying mechanisms of detection
and blocking.

https://doi.org/10.1145/3419394.3423644
https://doi.org/10.1145/3419394.3423644


IMC ’20, October 27–29, 2020, Virtual Event, USA Alice et al.

Our systematic study finds that the GFW has started to identify
Shadowsocks servers using a combination of passive traffic analy-
sis and active probing. Figure 1 illustrates the general notion: the
GFW first detects suspected Shadowsocks traffic, using features
like the size and entropy of the first data packet in each connection.
Once a server falls under suspicion, the GFW sends active probes
to it, in different stages, to confirm whether the server really is
Shadowsocks. The probes are partial replays of past legitimate con-
nections, and random probes of varied lengths. We suspect that the
probes are designed to attack detection vulnerabilities in different
implementations of Shadowsocks. The GFW has been known to use
active probing against various circumvention tools since as long
ago as 2011 [14], but the techniques now in use against Shadow-
socks are new and more sophisticated than what has previously
been reported.

In summary, our work makes the following contributions:

• We reveal and systematically study the GFW’s latest secret
weapon against Shadowsocks.

• We identify and fingerprint different types of active probes,
and infer the probable intention behind them.

• We derive a more realistic adversary model of replay attacks.
• We introduce a temporary but effective mitigation against
the detection, and provide suggestions for defending against
active probing.

• Wehave collaboratedwith the developers of different Shadow-
socks implementations to make Shadowsocks more resistant
to active-detection attacks.

2 BACKGROUND ON SHADOWSOCKS
Shadowsocks is an encrypted proxy protocol. It attempts to avoid
detection not by imitating some other protocol, but by using en-
cryption to appear as a uniformly random byte stream. There are
two components: client and server. The server is typically installed
on some network outside the censor’s control. The client sends
an encrypted target specification to the server. The server then
connects to the target and begins proxying traffic for the client. All
traffic between the client and the server is encrypted.

It will be important to know a few details of how Shadowsocks
encryption works, in order to appreciate the construction of the
probes described in Section 3.2. Shadowsocks specifies two main
classes of cryptographic constructions, known in the context of
the protocol as “stream ciphers” and “AEAD ciphers” [46]. The
stream cipher construction is cryptographically weak—it provides
only confidentiality, not integrity or authentication, and for that
reason is deprecated. The AEAD cipher construction (authenticated
encryption with associated data) was developed to fix the flaws
of the stream cipher construction, and provides confidentiality,
integrity, and authentication. Both constructions are keyed by a
master password that client and server share, and both intend to
require the client to demonstrate knowledge of the shared password
before using the proxy server (though as we will see, with stream
ciphers the requirement is loose).

With stream ciphers, the network stream in both directions is
one long ciphertext, preceded by a random initialization vector:

[variable-length IV][encrypted payload...]

Table 1: Timeline of all major experiments. The three set
of experiments span weeks and months. Shadowsocks, Sink
and Brdgrd refer to the experiments in Section 3.1, Sec-
tion 4.1 and Section 7.1 respectively.

Experiment Time span
Shadowsocks Sept 29, 2019 – Jan 21, 2020 (4 months)

Sink May 16 – 31, 2020 (2 weeks)
Brdgrd Nov 2 – 19, 2019 (403 hours)

Client and server use the same encryption key, but different initial-
ization vectors. The length of the initialization vector may be 8, 12,
or 16 bytes, depending on what cipher is configured.

With AEAD ciphers, the network stream is a sequence of length-
prefixed chunks, each encrypted and authenticated with an AEAD
tag. To avoid introducing any plaintext for the censor to match on,
the length prefixes are themselves encrypted and tagged.

[variable-length salt]
[2-byte encrypted length][16-byte length tag]
[encrypted payload][16-byte payload tag]
[2-byte encrypted length][16-byte length tag]
[encrypted payload][16-byte payload tag]
...

The entire stream is preceded by a salt, which is combined with the
shared secret password to produce a session key for each direction.
The salt may be 16, 24, or 32 bytes.

In both constructions, the first piece of data the client sends
through the tunnel is a host:port target specification, whose struc-
ture is borrowed from the SOCKS proxy protocol. The first byte is
an address type that indicates the format of the bytes that follow.
The three address types are:

[0x01][4-byte IPv4 address][2-byte port]
[0x03][1-byte length][hostname][2-byte port]
[0x04][16-byte IPv6 address][2-byte port]

There are many implementations of Shadowsocks [22, 25, 41, 44,
45, 47], and they differ in what features they support. Not every im-
plementation supports every possible cryptographic construction;
for example, OutlineVPN [25] supports AEAD ciphers only, not
stream ciphers. Some implementations take steps to mitigate replay
attacks, and some do not. This means that a probing adversary
may encounter different reactions to probes, depending on what
implementation of Shadowsocks is in use. In this work, we focus on
two of the more popular implementations, Shadowsocks-libev [45]
and OutlineVPN [25], but the vulnerabilities we describe may also
apply to other implementations.

2.1 Historical Vulnerabilities and Defenses
In August 2015, BreakWa11 discovered an active-probing vulnera-
bility in Shadowsocks stream ciphers, resulting from their lack of
integrity protection [8, 15]. An attacker can make many connec-
tions to a suspected Shadowsocks server, and take advantage of
ciphertext malleability to try every possible value of the byte that
corresponds to the address type in the target specification. Because
only 0x01, 0x03, and 0x04 are valid address types, a known fraction
of connections will time out differently from the rest. Shadowsocks
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developers mitigated the vulnerability by having the server not
immediately terminate a connection when a target specification
contains an unknown address type [30].

Shadowsocks developers attempted to further mitigate the prob-
lem by introducing a “one time auth” mode, in which each chunk
of data would carry its own authenticator. But a lack of integrity
protection in chunk length prefixes led to another active probing
vulnerability [15, 37]. In February 2017, AEAD ciphers became part
of the protocol specification, fixing this authentication problem.

In February 2020, Zhiniang Peng disclosed a devastating vulner-
ability in Shadowsocks stream ciphers [16, 36]. Using the Shadow-
socks server as a decryption oracle, an attacker, without knowledge
of the shared master password, can get full decryption of recorded
Shadowsocks connections.

2.2 Past Blocking of Shadowsocks
Since as early as October 2017, Internet users in China have reported
their Shadowsocks servers being blocked, by port or IP address [21,
38, 42]. Notable blocking events were reported in October 2017 and
January 2018, at the same time as two important political congresses
in China [21]. After the two congresses, many users reported their
servers got unblocked. Contrary evidence comes from Wiley et al.,
who during those times were testing Shadowsocks reachability
every day from locations around the world, but reported not having
seen any evidence of Shadowsocks blocking anywhere [53].

The reported large-scale blockings mostly happened during po-
litically sensitive times, including during the 30th anniversary of
the 1989 Tiananmen Square protests, the 70th anniversary of the
People’s Republic of China, and the 4th Plenary Session of the
19th Central Committee of the Communist Party of China. The
most recent spate of reports began around September 16, 2019 [17].

3 CHARACTERIZATION OF PROBES AND
THE PROBING INFRASTRUCTURE

Here we describe the experiments we conducted to collect and
understand the GFW’s active probes. Based on a collection of 51,837
active probes observed in a number of experiments, we answer the
following questions:

• What types of probes are observed, and under what condi-
tions?

• Where do the probes come from?
• Do the probes have any “fingerprints” that reveal informa-
tion about the underlying probing infrastructure?

• How long is the delay between a legitimate connection and
the probes that react to it?

3.1 Shadowsocks Server Experiment
We set up our own Shadowsocks servers and attempted to pro-
voke the GFW into probing them. To do this, we connected to our
servers using Shadowsocks clients, and sent HTTP and HTTPS
traffic through the encrypted proxy tunnel, using web browsers
and curl as automated drivers. We captured packets at both ends
for analysis. We used unmodified clients and servers in all our ex-
periments, did not create any special firewall rules, and did not
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Figure 2: Number of occurrences of random probes
(type NR1 and type NR2) by length. Note the two different
vertical axes. The lengths of type NR1 probes are evenly dis-
tributed in trios (𝑛 − 1, 𝑛, 𝑛 + 1) for 𝑛 = 8, 12, 16, 22, 33, 41, 49.
Type NR2 probes have length 221 and are roughly three
times as common as all the NR1 probes together.

install any obfuscation plugins. As summarized in Table 1, the ex-
periments were conducted over four months, from September 29,
2019 to January 21, 2020.

Because we could not know in advance what features the GFW
might use to identify Shadowsocks, we maximized our coverage by
using different Shadowsocks implementations and versions, and by
selecting different encryption algorithms. The two implementations
we used were Shadowsocks-libev [45] and OutlineVPN [25].

Shadowsocks-libev. We installed Shadowsocks-libev clients on
five VPSes in a Tencent Cloud Beijing datacenter, and Shadowsocks-
libev servers on five VPSes in a Digital Ocean UK datacenter. Each
client was configured to connect to only one of the servers. Two
pairs of the clients and servers used v3.1.3 of Shadowsocks-libev,
and the other three pairs used v3.3.1. As a control, we set up an
additional VPS within the same UK datacenter and never connected
to it, only capturing all incoming traffic.

We generated client traffic using curl. Through the Shadow-
socks proxy, we constantly fetched one of the websites at a given
frequency: https://www.wikipedia.org, http://example.com, and
https://gfw.report.

OutlineVPN. We installed an OutlineVPN v1.0.7 server in a US
university network. The OutlineVPN client we used was the latest
as of October 2019. The client was in a residential network in China.
Client traffic was provided by an instance of Firefox, configured to
automatically browse a subset of the Alexa top 1 million sites that
is censored in China.

Limitations. The locations of our vantage points lack some diver-
sity, making us less likely to observe any potential inconsistencies
in the probing system caused by geolocation.

3.2 Probe Types
We analyzed all connections to the server port running Shadow-
socks, and used the traffic received by the control host to verify
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Figure 3: Cumulative number of probes per prober IP ad-
dress.

that the probes we observed were triggered by our own connec-
tions, and not the result of “background radiation” Internet scans.
We observed a total of 51,837 active probes across all experiments.
We arrange the probes into two main categories, replay-based and
seemingly random, with a further distinction of probe types within
each category. The first category of probes, replay-based, have a
payload that is derived from the first data-carrying packet of some
previously recorded legitimate connection. We assign the probe
types in this category names beginning with ‘R’, for “replay”:

Type R1 Identical replay.
Type R2 Replay with byte 0 changed.
Type R3 Replay with bytes 0–7 and 62–63 changed.
Type R4 Replay with byte 16 changed.
Type R5 Replay with bytes 6 and 16 changed.

Probe types R3, R4, and R5 were received only in the OutlineVPN
experiment, not in the Shadowsocks-libev one. Only two type R5
probes were received in our experiments.

The other category of probes, seemingly random, have varying
lengths. Their contents that do not resemble a prior legitimate
connection in any way we can identify. We give probe types in this
category names starting with ‘NR’, for “non-replay”:

Type NR1 Probes of length 7–9, 11–13, 15–17, 21–23,
32–24, 40–42, or 48–50 bytes.

Type NR2 Probes of length exactly 221 bytes.
Figure 2 illustrates the distribution of type NR1 and NR2 probes.

The lengths of NR1 probes are distributed in trios centered on 8,
12, 16, 22, 33, 41, and 49 bytes. We will have more to say about this
distribution in Section 5.2.

3.3 Origin of the Probers
A simple idea to defend against active probing is to discover the
IP addresses of probers, and ban them. Below, we show it may be
challenging to implement such a defense, because the GFW probes
from a large and diverse pool of IP addresses, with high churn.

IP addresses. The 51,837 active probes were sent from 12,300
unique source IP addresses, all located in China. Figure 3 shows the
distribution of the number of probes sent per unique IP address. In
contrast to previous work, which found that “95% of the addresses
appear only once” [14, §5.3], in our tests more than 75% of addresses

Table 2: The most common prober IP addresses and their
number of occurrences.

Prober IP address Count

175.42.1.21 44
223.166.74.207 38
124.235.138.113 36
113.128.105.20 36
221.213.75.88 33
112.80.138.231 32
116.252.2.39 32

124.235.138.231 32
221.213.75.126 32
223.166.74.110 31

12128 21721167

895
5 34

Tor active probes 
 (Dunna et al.)

Shadowsocks active probes
Active probes 
 (Ensafi et al.)

Figure 4: Overlap in prober source IP addresses across inde-
pendently collected datasets.

Table 3: Counts of unique prober IP addresses per au-
tonomous system, across all experiments.

AS4837 6262 AS58563 44
AS4134 5188 AS17638 17
AS17622 315 AS9808 2
AS17621 263 AS4812 1
AS17816 104 AS24400 1
AS4847 101 AS56046 1

AS56047 1

sent more than one probe. The most common prober IP addresses
are summarized Table 2.

We compared our list of prober IP addresses against 934 that
were observed to send active probes to Tor servers in 2018 by Dunna
et al. [13], and 22,000 that were observed to send various types of
active probes between 2010 and 2015 by Ensafi et al. [14]. Figure 4
shows that three sets overlap only slightly. We note the IP address
202.108.181.70, which was responsible for an inordinate number of
probes in previous work [14, §5.3], does not appear in our data. The
small overlap is not unexpected, given that past work has observed
high churn in prober IP addresses.
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Figure 5: CDF of TCP source port numbers of probes in one
experiment, including 1,576 probes.

Autonomous systems. The autonomous system (AS) distribution
of probers is shown in Table 3. The two ASes that account for the
most Shadowsocks probes are AS4837 (CHINA169-BACKBONE
CNCGROUP China169 Backbone) and AS4134 (CHINANET-BACK-
BONE No.31, Jin-rong Street). These two were the most common
in previous work [14, 56] as well. Other ASes that overlap with
previous work are AS17816, AS9808, AS56046, AS17638, AS56047,
and AS17622. AS17622 (CNCGROUP-GZ China UnicomGuangzhou
network) accounts for a much larger fraction of probes than in
previous work [14, Figure 7]. Other previously attested ASes do not
appear in our data, including AS7497 (CSTNET-AS-AP Computer
Network Information Center), which was the third most common
source of probes seen by Ensafi et al [14]. There are also ASes in
our dataset that have not been previously documented as being a
source of active probes.

3.4 Fingerprinting the Probes
As in previous work, we fingerprint the packet-level features of
active probes. At the IP layer, we examine the ID and TTL fields.
At the TCP layer, we look at source ports and timestamps.

IP ID and TTL. We fingerprint the IP ID and TTL of PSH/ACK
packets sent by the probers. As in Ensafi et al. [14, §5.5], we find no
clear pattern in the IP ID sequences, and that TTLs remain within
the range 46–50.

TCP source ports. Around 90% of probes came from source ports
in the range 32768–60999. This range, highlighted in Figure 5, hap-
pens to be the default source port range of many Linux kernels.
Probes never used a source port below 1024 (the precise minimum
we saw in one experiment was 1212). These result differ from those
of previous work [14, §5.5], which observed all ports being used,
and no range of ports being more common than any other.

TCP timestamp (TSval). The TCP timestamp is a 32-bit counter
that increases at a fixed rate, attached to every non-RST TCP seg-
ment [7, §3]. It is not an absolute timestamp, but is relative to how
and when the counter was initialized, and its rate of increase varies
across operating systems. Figure 6 shows the timestamp value at-
tached to the SYN segment of each probe. The figure shows that

Oct 27 Nov 03 Nov 10 Nov 17
0

231

232

TC
P 

TS
va

l

250 Hz

1000 Hz

Identical replay (R1)
Byte-changed replay (R2–R5)
Non-replay (NR1–NR2)

Figure 6: Non-independent processes revealed by common
TCP timestamp sequences. The labeled marker lines have
slopes of precisely 250 Hz and 1000 Hz. The small cluster
of 22 non-replay probes on the 1000 Hz line locally have a
slope of 1009 Hz, but here the measurement is less certain
because they span only about 3.5 s. The 1000 Hz line does
not become 250 Hz, even if connected to one of the sparse
non-replay data points at the left edge of the figure.

although the probers use thousands of source IP addresses, they
cannot be fully independent, because they share a small number
of TCP timestamp sequences. In this case, there are at least seven
different physical systems or processes, with one of the seven ac-
counting for the great majority of probes. We say “at least” seven
because we would not be able to distinguish two processes whose
TSvals sequences are very close (which could happen, for exam-
ple, if both processes were restarted at about the same time). We
measured the slope of the linear sequences to be almost exactly
250 Hz, with the exception of one small cluster of 22 closely spaced
points whose slope is closer to 1000 Hz. There are two cases where
a sequence reached the maximum value of 232 − 1 and wrapped
around to 0. Compare Figure 6 to Figure 11(c) of Ensafi et al. [14],
which also shows 250 Hz and 1000 Hz sequences.

3.5 Delay of Replay Attacks
The GFW may record the first data-carrying packet of a genuine
client connection and replay it later, possibly with modifications,
as an active probe. Figure 7 shows the variability in delay between
when a legitimate connection is made and when the GFW sends
replay-based probes derived from that connection. Because probe
payloads may be replayed more than once (up to 47 times, in one
case), we present two distributions, with and without repeated pay-
loads. The orange line represents the delay of the first occurrence
of each replay-based probe payload, while the blue line shows the
delay of all replay-based probes, including repeated payloads. The
total number of probes is 3,269 for first occurrences and 11,137 for
all occurrences.

More than 20% of first replays arrived within one second; more
than 50% within one minute; and more than 75% within 15 minutes.
Replay-based probes may be sent almost immediately, or may be
stored for a surprisingly long time before being sent. The shortest
delay we observed was 0.28 seconds and the longest was 570 hours.
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Figure 7: CDF of the delay of replay-based probes. Note the
logarithmic 𝑥-axis.

4 WHAT TRIGGERS ACTIVE PROBING
There are alternative hypotheses for how the GFW might go about
discovering Shadowsocks servers. One is large-scale, proactive port
scanning; another is reactive probing triggered by legitimate con-
nections. The fact that the unused control host in the previous
section did not receive any active probes leads us to discard the
proactive scanning hypothesis. Instead, we assume that probes are
sent only when the probing system sees a suspected Shadowsocks
connection.

What, then, constitutes a suspected Shadowsocks connection,
from the GFW’s point of view? In this section, we deal with the
following questions:

• How much traffic is required to trigger active probes?
• Why were type R3, type R4 and type R5 probes sent only to
the OutlineVPN server, not the Shadowsocks-libev server?

• Does the GFW consider the length of packets?
• Does the GFW consider the entropy of packet payloads?
• Do outside-to-inside connections (with the client outside
China and the server inside) result in as much active probing
as inside-to-outside connections?

4.1 Experiments
A convincing way to show what features the GFW uses for traffic
analysis is to outline a minimal, reproducible set of conditions that
trigger active probing. Accomplishing this is, unsurprisingly, the
most challenging part of this work, as it requires us to isolate a
small number of features that the GFW really uses, from countless
possibilities.

We are aided by two observations. First, the byte streams sent
between Shadowsocks clients and servers are, by design, indistin-
guishable from random. This means that it may not be necessary
to use a real client Shadowsocks implementation; we may be able
trigger active probes by sending random data. Second, as described
in Section 3.5, replay probes may be sent as soon as 0.28 seconds
after a legitimate data packet. The GFW could have seen only the

Table 4: Summary of random-data experiments. [𝑥,𝑦]means
the value is uniformly and randomly sampled from a range,
independently for each connection. In Exp 1, the server
was switched from sink mode to responding mode after 310
hours; we label the two subexperiments 1.a and 1.b.

Client Server
Exp # Length (bytes) Entropy Mode
1.a [1, 1000] > 7 sink
1.b [1, 1000] > 7 responding
2 [1, 1000] < 2 sink
3 [1, 2000] [0, 8] sink

very beginning of a client-to-server flow, before deciding that the
traffic was suspicious.

Guided by these two observations, we implemented a TCP client
that connects to a TCP server and sends one data packet, with a
specified length and Shannon entropy. We implemented a server
with two operating modes: sink mode and responding mode. In
sink mode, the server accepts TCP connections, but does not re-
spond with any data, and closes connections after 30 seconds. In
responding mode, the server responds to probers—but not our own
clients—with between 1 and 1000 bytes of random data.

Table 4 summarizes the design of the random-data experiments.
Table 1 shows the time span of the experiment. Clients ran on
different VPSes within the same Tencent datacenter in Beijing. All
servers ran in the same Digital Ocean datacenter in the US. Client
and server IP addresses were not reused across experiments.

4.2 Experiment Results and Analysis
Little traffic is required to trigger active probes. Our sink server,

despite not being a real Shadowsocks server and never sending data,
received many of the same types of probes as in the Shadowsocks
server experiment of Section 3.1. After a TCP handshake, a single
data packet from client to server suffices to trigger active probes.

Only certain lengths are replayed. Although our clients sent data
packets with lengths of between 1 and 2000 bytes, virtually all
probes that were determined to be replays had a payload length of
between 160 and 700 bytes, with the maximum length being 999
bytes. Figure 8 shows the distribution of probe lengths in Exp 1.a.
The distribution of lengths exhibits a stair-step pattern, reflecting
the fact that certain lengths are more likely to be replayed. Namely,
the lengths of replay probes tend to have certain remainders when
divided by 16. Considering type R1 probes (type R2 is similar),
of the 376 probes whose length is in the interval 168–263 bytes,
72% have a length whose remainder when divided by 16 is 9; of
1,558 in the interval 384–687, 96% have a length whose remainder
is 2; and of 749 in the middle interval 264–383, there is a mix of
remainders 9 (37%) and 2 (32%). The results suggest that the GFW
considers packet lengths in classifying Shadowsocks traffic. Packet
length is a reasonable feature to use, because Shadowsocks does
not pad the contents of the tunnel, only incidentally changing the
underlying packet length distribution by adding an address header
prefix (see Section 2) and, with AEAD ciphers, length prefixes and
tags. The payload length distribution of the Shadowsocks traffic
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Figure 8: CDF of the payload lengths of replay-based probes
over the 310 hours of Exp 1.a. The lengths of replay probes
exhibit a stair-step pattern.
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Figure 9: Rate of replay-based probes per legitimate connec-
tion in Exp 3, according to per-byte entropy of the legitimate
connection.

therefore resembles that of the underlying traffic, which is often
HTTP or TLS.

High-entropy packets are more likely to be replayed. Two pieces
of evidence support this conclusion. First, Figure 9 shows that while
packets of all entropies may be replayed, one with a high per-byte
entropy of 7.2 is almost four times as likely to be replayed as one
with a low entropy of 3.0. Second, Exp 1.a and Exp 2 differ only in
the entropy of packets, and over the same period of time, the server
in Exp 1.a received significantly more probes than the one in Exp 2.

Probes of type R3 and R4 are not sent unless the server has pre-
viously responded to probes of type R1 and R2. The thousands of
probes received in Exp 1.a, Exp 2, and Exp 3 could all be classified
as type R1, R2, or NR2. In other words, we were not able to trig-
ger probes of types R3, R4, R5 or NR1 in these experiments. This
result reminded us of the fact that in the experiment of Section 3.1,

type R3, R4 and R5 probes were only ever received by OutlineVPN
servers, and not by Shadowsocks-libev servers.

As will be expanded on in Section 5.3, one major difference
between Shadowsocks-libev and the version of OutlineVPN we
used is that Shadowsocks-libev has a filter to defend against replay
attacks, and OutlineVPN does not. (At least in the version we used—
OutlineVPN has since added replay protection [26].) For this reason,
Shadowsocks-libev servers does not respond to exact replays of
earlier connections, while OutlineVPN servers do.

We therefore hypothesize that the GFW does not send probes
of type R3, R4, and R5 unless the server has already responded to
probes of type R1 and R2. We switched the server in Exp 1.a to
responding mode after 310 hours of operating in sink mode. Soon
after the server started responding to type R1 and type R2 probes,
it began to receive a large number of type R3 and type R4 probes.
The server continued to receive type R1 and R2 probes as well.

These results suggest that the active probing system operates
in stages. It does not move on to the next stage until a certain
condition is observed. This implementation detail suggests that the
censor may have designed its active probing system with not only
Shadowsocks in mind. Other, similarly behaving protocols may also
be targeted.

We do not know why type R5 and type NR1 probes did not
appear in any of our four random-data experiments.

New probe types observed. The sink/responding servers received
probes that did not match the probe types seen in our earlier ex-
periment with Shadowsocks-libev and OutlineVPN. In Exp 1.b, we
saw 11 replay-based probes that had bytes from 16 to 32 changed.
We additionally saw many non-replay probes across all four experi-
ments. In total, there were 9 probes of 53 bytes, 5 probes of 56 bytes,
3 probes of 169 bytes, 1 probe of 180 bytes, and 1 probe of 402 bytes.

The GFW does not distinguish traffic directionality. We set up a
Shadowsocks server inside China and made connections to it from
outside. The traffic proxied was generated by automatically brows-
ing a subset of Alexa top 1 million websites. The server received a
large amount of active probing. This result indicates that the GFW
probes suspected servers regardless of whether the server is inside
or outside China. This bidirectional triggering behavior differs from
Winter and Lindskog’s [56, §4.4] observation that outside-to-inside
Tor connections did not trigger active probing. On the other hand,
the GFW is known not to distinguish traffic directionality for many
protocols, including DNS [1, §2], HTTP [11, §3] and TLS [9, §3.1].
The GFW’s sensitivity to directionality has even been known to
change over time, as in the case of TLS ESNI blocking, which was
bidirectional for two weeks before becoming unidirectional [6].

5 INTENTION BEHIND THE PROBES
As discussed in Section 3.2, we discovered seven distinct types of
active probes to our Shadowsocks servers. A natural question is:
what information can the GFW get from these probes? Unlike in
previous work [14, 56], for us this question cannot be answered
by a simple glance at the probes. We conjecture that if the probes
elicit reactions from a Shadowsocks server that differ from the
reactions of non-Shadowsocks servers, the GFW can be confident
in classifying the server as Shadowsocks.
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Therefore, understanding the effects of those probes on Shadow-
socks servers is key. We developed our own prober simulator to
observe how Shadowsocks servers react to probes like those sent
by the GFW. We further checked the source code of Shadowsocks
implementations to understand their internal logic. Based on this
analysis, we formed conjectures regarding what distinguishable
server reactions may be exploited for classification.

5.1 Prober Simulator Experiment
We developed a prober simulator that can send all seven types of
probes to Shadowsocks servers, and record their reactions. The
prober simulator allows us to test a wide range of Shadowsocks
implementations, with different configurations, efficiently and lo-
cally. In addition, the prober simulator lets us cover implementation
corner cases and reveal some fingerprintable features that may have
not been exploited by the GFW.

Replay-based probes. To simulate replay-based probes, the simu-
lator records the first data-carrying packet in a connection between
a Shadowsocks client and server, then sends the data to the server in
a separate connection. To send byte-changed probes, the simulator
randomly changes certain bytes of the payload to different values.

Non-replay probes. To simulate non-replay probes, the simulator
simply sends a specific number of random bytes. The justification
here is that the servers’ reactions to the GFW’s non-replay probes
are no different from their reaction to random probes. For compre-
hensiveness, we let the simulator send random probes with lengths
of between 1 and 99 bytes, as well as probes of 221 bytes.

Choice of servers. We chose a set of Shadowsocks implemen-
tations that has significant coverage over the Shadowsocks cir-
cumvention ecosystem. Specifically, we tested the Shadowsocks
implementations that met any of the following conditions: 1) is
available in a repository of a major Linux distribution; 2) is avail-
able in the pip repository; 3) is the latest version; 4) is widely used
by any popular one-click script; 5) has a recent fix to any distin-
guishable reactions as the result of a preliminary report on these
attacks; or 6) was recommended to us by developers. Using this
selection process, we chose Shadowsocks-libev (v3.0.8, v3.1.3, v3.2.5,
v3.3.1, and v3.3.3) and OutlineVPN (v1.0.6, v1.0.7, and v1.0.8).

5.2 Intention Behind Random Probes
5.2.1 Servers’ reactions to random probes. Figure 10 summarizes
the reactions of different Shadowsocks implementations to random
probes of various lengths. For each implementation, we group their
available encryption methods first by stream ciphers versus AEAD
ciphers, then by the size of their initialization vector (IV) or salt.
For example, among the stream ciphers supported by Shadowsocks-
libev are “aes-128-ctr” and “aes-256-cfb”. Both of these have a 16-
byte IV, so we group them in the “16 bytes” row. Refer to Section 2
for the meaning of IV and salt in the context of Shadowsocks pro-
tocols.

Server reactions in Figure 10 are represented by the codes “TIME-
OUT”, “RST”, and “FIN/ACK”. TIMEOUT means that the server
waits for more data, until either it or the prober reaches a time-
out. The GFW usually times out in less than 10 seconds, while the
default timeout value for many Shadowsocks implementations is

60 seconds. Therefore, TIMEOUT typically means that the prober,
and not the server, is the first to send a FIN/ACK to close the con-
nection. FIN/ACK and RST mean that the server sends either a
FIN/ACK or a RST immediately. The choice of FIN/ACK or RST
may depend on OS-level socket handling. Frolov et al. showed [19,
§IV.C] that when closing a socket on Linux, a FIN/ACK will be sent
if the application has read all the data from its kernel socket buffer;
otherwise a RST will be sent.

Figure 10 demonstrates that different implementations using
different forms of encryption have fingerprintable reactions to
probes of varying lengths. Below we discuss how the GFW may
exploit these reactions in each Shadowsocks implementation.

Shadowsocks-libev v3.0.8–v3.2.5 with stream ciphers. Take the first
row in Figure 10a as an example. Shadowsocks-libev v3.0.8–v3.2.5
servers with an 8-byte IV exhibit three reactions, depending on
the length of the random probe. When the length of a probe is 1–8
bytes, the server always times out. This is because the server has
only received a (partial) IV and is awaiting a target specification.

When the length of a probe is 9–14 bytes, the server usually
sends an immediate RST, because it has not received a complete
target specification. The shortest random probe likely to decrypt
to a meaningful specification is 15 bytes, which meets the minimal
length requirement of a complete IPv4 specification (see Section 2).
A hostname specification could be slightly shorter than 15 bytes,
but only if the 1-byte hostname length field happens to decrypt to
the value 1 or 2.

When the length of a probe is 15 or more bytes, the server
may have any of the three possible reactions: RST, TIMEOUT or
FIN/ACK. The reaction depends on whether the random payload
decrypts to a meaningful target specification. The first requirement
for a meaningful target specification is that the address type must
be one of the values 0x01, 0x03, or 0x04; any other value results
in an immediate RST. Because the address type is a 1-byte field,
we might expect to see an immediate RST in a 1 − 3

256 fraction
of tests. What we actually see is a fraction closer to 1 − 3

16 . The
reason for this is that Shadowsocks-libev masks out the upper 4 bits
of the field (an artifact of the “one time auth” scheme mentioned
in Section 2.1). The probability of a RST reaction decreases with
longer probes, because longer probes are more likely to contain a
complete IPv6 address specification, or a hostname length that is
consistent with the packet length.

Upon receiving a complete target specification, the Shadowsocks
server tries to connect to the given target. Specifically, when the
address type field decrypts to 0x04, the server tries to resolve the
hostname; when the address type is 0x01 or 0x03, the server sends
a SYN packet to the target’s IP address and port. Since this behavior
is a connection to an essentially random IP address or hostname,
the connections almost always fail; and when that happens, the
server sends a FIN/ACK to the client to close the connection. If the
remote connection does not fail immediately (for instance, if the
remote host does not respond and the Shadowsocks server spends
time retransmitting SYN packets), the GFW’s probers will be the
first to close the connection with a FIN/ACK.

Shadowsocks-libev v3.0.8–v3.2.5 with AEAD ciphers. With AEAD
ciphers, servers have a different set of fingerprintable reactions. The
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Implementation Salt Length
(Bytes)

Probe Length (Bytes)
1 ... 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 ... 31 32 33 34 35 ... 39 40 41 42 43 ... 47 48 49 50 51 ... 221

SS-libev
v3.0.8-v3.2.5

8 TIMEOUT RST RST (above 13/16) or TIMEOUT (below 3/16) or FIN/ACK (below 3/16)
12 TIMEOUT RST RST (above 13/16) or TIMEOUT (below 3/16) or FIN/ACK (below 3/16)
16 TIMEOUT RST RST (above 13/16) or TIMEOUT (below 3/16) or FIN/ACK (below 3/16)

SS-libev
v3.3.1-v3.3.3

8 TIMEOUT TIMEOUT (above 13/16) or FIN/ACK (below 3/16)
12 TIMEOUT TIMEOUT (above 13/16) or FIN/ACK (below 3/16)
16 TIMEOUT TIMEOUT (above 13/16) or FIN/ACK (below 3/16)

(a) Stream ciphers

Implementation Salt Length
(Bytes)

Probe Length (Bytes)
1 ... 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 ... 221

SS-libev
v3.0.8-v3.2.5

16 TIMEOUT RST
24 TIMEOUT RST
32 TIMEOUT RST

SS-libev v3.3.1-v3.3.3 16,24, or 32 TIMEOUT
OutlineVPN v1.0.6 32 TIMEOUT FIN/ACK RST

OutlineVPN v1.0.7-v1.0.8 32 TIMEOUT

(b) AEAD ciphers

Figure 10: Reactions of Shadowsocks servers to synthetic random probes with different lengths. Figure 10a is for servers using
the stream ciphers construction and Figure 10b is for the AEAD ciphers construction. Payload lengths that the GFW has been
observed to send are marked in red. “TIMEOUT” means the server waits until the prober or itself times out. “RST” means the
server sends an immediate TCP RST. “FIN/ACK” means the server will be the first to send a FIN/ACK to close the connection.

first row in Figure 10b represents an AEAD cipher with a 16-byte
salt. When the probe length is less than or equal to 50 bytes, the
server times out waiting for more data. It wants there to be at least
enough data for the salt (16 bytes), encrypted length prefix (2 bytes),
encrypted length tag (16 bytes), and another tag (16 bytes) for the
first encrypted data payload. Once 51 bytes or more are received,
the server tries to decrypt the data received, which invariably fails
with an authentication error. (Unlike with stream ciphers, where
random data may by chance decrypt to something meaningful, with
AEAD ciphers, the probability of that happening is negligible.) The
server sends out an immediate RST because of the authentication
error.

Changes in Shadowsocks-libev v3.3.1–v3.3.3. The parsing logic
for Shadowsocks-libev v3.3.1–v3.3.3 is very similar to what we
just described above for Shadowsocks-libev v3.0.8–v3.2.5. The only
difference, as shown in Figure 10b, is that the server always times
out instead of sometimes sending an immediate RST [32].

OutlineVPN v1.0.6. OutlineVPN exclusively uses the AEAD ci-
pher construction of Shadowsocks, and only with the “chacha20-
ietf-poly1305” method, which has a 32-byte salt. In OutlineVPN
v1.0.6, when the probe length is less than 50 bytes, the server times
out. The server wants 50 bytes in order to parse the following
structure:

[32-byte salt]
[2-byte encrypted length][16-byte length tag]

Unlike Shadowsocks-libev, the OutlineVPN server does not addi-
tionally wait for enough data for there to be a second tag. More
uniquely, the OutlineVPN server sends a FIN/ACK immediately
when it receives a probe of exactly 50 bytes. When the probe length
is greater than 50 bytes, the server sends an immediate RST due to
an authentication failure.

OutlineVPN v1.0.7–v1.0.8. Starting in OutlineVPN v1.0.7, the de-
velopers fixed the server’s distinguishable reactions [19, 48]. Like
the newer versions of Shadowsocks-libev using AEAD ciphers, the
server always times out, regardless of probe length.

5.2.2 How an attacker might use the information from random
probes. We use the general term “attacker” instead of “GFW” in this
section for two reasons. First, attacks may be performed not only
by the GFW, but by any censor capable of observing Shadowsocks
traffic. Second, due to the black-box nature of the GFW, we can
only guess at its internal logic and cannot confirm our suspicions.

An attacker can identify a Shadowsocks server with high confi-
dence using statistical analysis of its reactions to random probes.
Specifically, an attacker can send a set of probes with varying
lengths to the server and record its reactions. After collecting
enough reactions, the attacker may perform a statistical analysis.
A server whose reactions fit into one row of Figure 10 is then very
likely to be a Shadowsocks server. The fact that the GFW needs
only a single probe to detect and block a Tor server [56], but a set
of several probes before blocking a Shadowsocks server, suggests
that the GFW does some statistical analysis of this kind to detect
Shadowsocks.

The attacker may even be able to infer the length of the IV in
older Shadowsocks implementations. Furthermore, when the IV
is inferred to be 12 bytes long, the attacker knows that the cipher
used is “chacha20-ietf”, because that is the only supported cipher
with a 12-byte IV [46, § Stream Cipher].

By similar reasoning, an attacker may be able to infer which
Shadowsocks implementation is in use, and its approximate version.
For example, whether an authentication error results in a RST or a
TIMEOUT can be used to determine if the server is running an older
or newer implementation [19]. Whether the probability of RST is
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around 1 − 3
256 or 1 − 3

16 determines whether the Shadowsocks
implementation applies a mask to the address type field.

In practice, the GFW is observed to send a set of type NR1 and
NR2 probes to the same server. Instead of sending the probes all at
once, the GFW sends a few of them in each hour. We conjecture
that the GFW does this in order to make the probes less noticeable
and harder to fingerprint. A design like this also allows the GFW
to use resources in a more balanced and efficient way.

The probe lengths that the GFW sends, marked in red in Fig-
ure 10, coincidewith thresholds at which reactions change in certain
Shadowsocks implementations. For example, a server that uses ci-
phers with 8-byte IVs will time out 8-byte probes, and immediately
RST 9-byte probes. The GFW covers this transition point by send-
ing probes of length 7, 8, and 9 bytes. However it is worth noting
that type NR1 probes of length 32–34 bytes and 40–41 bytes, as
well as type NR2 probes of length 221 bytes, do not coincide with
any server thresholds. However, they may still be useful to identify
Shadowsocks servers. Depending on implementation, these probes
may be used to calculate the empirical probability for a server to
send a RST. If the possibility is close to 1− 3

256 or 1− 3
16 , the attacker

may infer that the Shadowsocks server uses stream ciphers.

5.3 Intention Behind Replay-based Probes
Servers’ reactions to replay-based probes. Table 5 summarizes vari-

ous servers’ reactions to replay-based probes. This table only covers
the case where replays are long enough to contain a complete target
specification, because, in the absence of external traffic shaping,
the genuine payloads on which the replays are based are always
long enough to contain that information.

Implementations without a replay defense mechanism. The reac-
tion of a server to type R1 identical replays depends on whether it
has a replay defense mechanism or not. Servers without a replay
defense mechanism, such as OutlineVPN v1.0.6–v1.0.8, respond to
identical replay with a stream of data in one or many packets. As
soon as a prober receives data, it ACKs the data and sends FIN/ACK
to close the connection.

An adversary might even guess what protocol is being proxied,
by checking if the length of the server’s responses are always the
same for a given replayed payload. Although the responses of the
Shadowsocks servers are encrypted, a consistent response length
may suggest that the underlying message is an HTTP response or
TLS ServerHello, for example.

A key observation is that the offsets of the bytes that change in
probe types R2, R3 and R5 contain the IV or salt. This means that
a Shadowsocks server’s reactions to these probes are no different
from the random probes discussed in Section 5.2. Type R4 probes
may be a chosen ciphertext attack, targeting Shadowsocks servers
that use stream ciphers with a 16-byte IV. Comparing to probes of
type R2, R3 and R5, which are also essentially chosen cipher attacks,
type R4 is more fine-grained, because a censor can get the exact
probability of each reaction by enumerating all 255 altered byte
values.

Implementations with a replay defense mechanism. Even with a
replay defense mechanism, the behaviors of a Shadowsocks imple-
mentation may be distinguishable. For example, Shadowsocks-libev

Table 5: Servers’ reactions to identical replays (type R1) and
byte-changed replays (types R2–R5) differ depending on re-
play detection and stream/AEAD ciphers. R: Reset, T: Time-
out, F: FIN/ACK, D: Sending Data. Here we assume all re-
plays are long enough to contain a complete IV and target
specification.

Implementations Encryption
Mode

Identical
Replay

Byte-changed
Replay

Shadowsocks-libev
v3.0.8–v3.2.5

Stream R R/T/F
AEAD R R

Shadowsocks-libev
v3.3.1, v3.3.3

Stream T T/F
AEAD T T

OutlineVPN AEAD D T

implements its replay defense using a Bloom filter that remembers
what IVs and salts have already been received [40].

As shown in Table 5, when AEAD ciphers are used, servers’ reac-
tions to identical and byte-changed replays are consistent. However,
when stream ciphers are used, the servers’ reactions to identical
and byte-changed replays are inconsistent. For identical replays,
Shadowsocks-libev v3.0.8–v3.2.5 is guaranteed to send a RST imme-
diately; while the same server receiving byte-changed replays will
have one of three different reactions: Reset, Timeout, or FIN/ACK.

Furthermore, with stream ciphers, an attacker can detect whether
a replay filter exists. For example, the attacker can send the same
random probe to the server twice. If the first probe happens to
cause an outgoing connection to some remote server, while the
second probe is blocked by the replay filter, the difference in the
timing of responses will tell the attacker that a replay filter is in
place. Although we cannot confirm that this is the exact logic used
by the GFW, we did observe that around 10% of type NR2 probes
were sent to the same server more than once.

6 GFW’S BLOCKING MODULE
Since July 2019, we have been running experiments on 63 vantage
points in China, the US, the UK, the Netherlands, and Singapore.
Each vantage point was used either as a server or a client. We
used various Shadowsocks implementations [25, 44, 45, 47] and
settings. Interestingly, although many of our VPSes have been
under intensive active probing, only three have been blocked. In
this section, we analyze and speculate on the nature of the blocking
and unblocking mechanism used by the GFW.

Block by port, or by IP address? The three blocked servers were
not all blocked in the same way. Some were blocked by dropping
all traffic from a specific server port (block by port), and some by
dropping traffic from all ports (block by IP address). In either case,
only the server-to-client direction was blocked. This method of
unidirectional packet dropping, or null routing, is similar to the
way GFW blocks Tor servers, as shown in previous work [56].

It may be reasonable, from the censor’s point of view, to block
an entire IP address. The servers running Shadowsocks are usually
dedicated solely to circumvention, and do not host other services
that the censor cares to keep accessible, so there is little harm to
the censor in blocking the server entirely.



How China Detects and Blocks Shadowsocks IMC ’20, October 27–29, 2020, Virtual Event, USA

When to unblock? GFW is known to probe blocked Tor servers
every 12 hours, and unblock them when Tor no longer appears to
be running [56]. In contrast, in our experiments, we saw no regular
checks to see whether blocked servers were still running Shadow-
socks. One of our servers became unblocked more than a week
after being blocked. The server had continued to run Shadowsocks
even after being blocked, and we observed no probes to the server
before the GFW unblocked it. This may be because, as explained in
Section 5.2, it takes more probes to confirm Shadowsocks than it
does Tor, making post-block checks more expensive.

Why were our servers rarely blocked? While the fact that active
probing happens is clear, it is still unclear to us how active probing
relates to the blocking of Shadowsocks servers. Few of the servers
that received probes were blocked. One of the servers that was
blocked had operated for only around 15 minutes, and had not
received nearly as many probes as other servers that did not get
blocked.

We have two hypotheses attempting to explain this phenom-
enon. One is that the blocking of Shadowsocks is controlled by
human factors. That is, the GFW may maintain a list of detected
or suspected Shadowsocks servers, and it is up to a human deci-
sion whether the servers on the list should be blocked or not. This
hypothesis would partially explain why more blocking has been
reported during politically sensitive periods of time [17, 21].

Another hypothesis is that active probing is ineffective against
the particular Shadowsocks implementations and versions that we
used in most of our experiments. Indeed, all three servers that
got blocked were running ShadowsocksR [47] or Shadowsocks-
python [44], which differ from the Shadowsocks-libev [45] and
OutlineVPN [25] implementations we used in most of the experi-
ments. However, numerous user reports suggest that Shadowsocks-
libev and OutlineVPN are not immune to being blocked, in general.

7 CIRCUMVENTION
The detection of Shadowsocks happens in two stages: 1) passive
identification of suspected Shadowsocks connections, then 2) ac-
tive probing of the server. Therefore, to avoid blocking, one can
1) evade the passive detector, or 2) respond to active probes in a way
that does not result in blocking. Below, we introduce and discuss
these two circumvention strategies. We have shared our findings
and proposed defenses with the developers of Shadowsocks-libev
and OutlineVPN, which has led to improvements to those tools
(see Section 11).

7.1 Defense Against Traffic Analysis
Changing payload lengths in the client-to-server stream is effective.

In Section 4.2, we showed that the GFW considers the length of the
first data packet in a connection to identify Shadowsocks traffic.
This finding suggests that we canmitigate the GFW’s traffic analysis
attack by altering packet lengths.

Brdgrd [54] (bridge guard) is software that can be run on a
Shadowsocks server that causes the client to break its Shadowsocks
handshake into several smaller packets. Brdgrd was originally in-
tended to disrupt the detection of Tor bridges by forcing the GFW
to do complicated TCP reassembly [56], but here we take advantage
of its ability to shape client packet sizes.
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Figure 11: The intensity of active probing diminishes when
brdgrd is active.

As a test, we set up a Shadowsocks server and let a Shadowsocks
client make 16 connections to it every 5 minutes. We enabled and
disabled brdgrd at random times, and measured the rate of active
probing under both conditions. Table 1 summarizes the time span
of the experiment.

Figure 11 shows the number of probes received by the Shadow-
socks server over time. It shows probing going to zero within a few
hours of activating brdgrd. As soon as we disabled brdgrd again,
active probing resumed. The second time we enabled brdgrd, prob-
ing completely stopped for around 40 hours, but later a few more
probes arrived. Note that receiving a few active probes does not
necessarily mean that changing packet sizes is ineffective, because
the server still received a small number of probes even 50 hours
after we deactivated the client. The reduction in probing while
brdgrd was active is not just a coincidence, because no significant
change in the number of active probes was observed in a control
server that did not have brdgrd installed.

We also set up a server that had brdgrd enabled from the begin-
ning, before any Shadowsocks client had connected to it. Although
the same number of connections were made to both servers, this
server received even fewer probes than the server that had not
enabled brdgrd until after starting.

These observations further confirm that the traffic analysis mod-
ule of the GFW considers the TCP segment size of traffic from client
to server when detecting Shadowsocks traffic. Modifying packet
sizes can significantly mitigate active probing by disrupting the
first step in classification.

Limitations on Brdgrd. While brdgrd can effectively reduce active
probing for the time being, it cannot be regarded as a permanent
solution to Shadowsocks blocking for the following reasons.

First, to make brdgrd less fingerprintable, the TCP window size
is designed to be randomly picked from a range. However, having
inconsistent TCP window size announcements may itself be a fin-
gerprintable feature. This issue may be mitigated by sticking to a
fixed TCP window size for a certain amount of time.

Second, brdgrd will have to announce a TCP window size that is
uncommonly small, unlike that of any real TCP implementation.

Third, brdgrd can result in connection failure for some Shadow-
socks implementations. As shown in Figure 10, some Shadowsocks
implementations will immediately RST the connection when the
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first data-carrying packet is not long enough to contain a complete
target specification. It is not rare for brdgrd to chop the packets
into such small pieces, triggering an immediate RST.

We conclude that a more thoughtful traffic shaping mechanism
is required to defend against the traffic analysis while preserving
usability and efficiency.

7.2 Defense Against Active Probing
Even with perfect traffic shaping—meaning the adversary cannot
passively distinguish Shadowsocks circumvention traffic from legit-
imate traffic at all—it is important to defend against active probing.
This is because a well-resourced adversary could skip the traffic
analysis step and probe all IP–port pairs that are observed to re-
ceive connections. Here we summarize and discuss strategies for
defending against replay-based probes and random probes.

Proper authentication. As introduced in Section 5, the lack of au-
thentication in Shadowsocks stream ciphers permits probing attacks
that exploit ciphertext malleability. This design flaw has been the
cause of many vulnerabilities in Shadowsocks [8, 15, 15, 16, 36, 37]
as well as other circumvention tools like V2Ray [2, 35].We therefore
suggest that users use AEAD ciphers exclusively, and encourage
circumvention tool developers to deprecate unauthenticated cryp-
tographic constructions entirely.

Replay filtering based on both nonces and timing. We have shown
in Section 3.5 that a realistic adversary model of active probing
should permit the censor to perform replay attacks after an arbitrar-
ily long delay. Such a model reveals an asymmetry between attack
and defense for purely nonce-based replay defense mechanism.
While it does not cost much in terms of resources for the GFW
to record a few legitimate payloads and replay them after a fairly
long delay, it is costly and complicated for Shadowsocks servers
to remember the nonces of all authenticated connections forever,
or until the master password is changed. The Shadowsocks server
must remember those nonces even after being restarted; otherwise,
the replay filter will be ineffective against replays that span a restart.
Fortunately, this unfair game can be inverted by the addition of a
timing-based defense mechanism: the server only responds to au-
thenticated connections that are not replays and whose timestamp
is within an expiration time, similar to what VMess servers do [2].
This way, the server does not need to remember nonces forever,
but only for a limited time.

Being consistent in servers’ reactions. As discussed in Section 5,
circumvention protocols should react consistently not only in nor-
mal operation, but also when an error occurs. Censors may in-
tentionally trigger protocol edge cases in an attempt to finger-
print servers. Using inconsistencies similar to what we found in
Shadowsocks-libev and OutlineVPN, Frolov et al. [19] demonstrated
that various proxy servers, including Shadowsocks-python and
OutlineVPN, can be identified using TCP flags and timing metadata
after the servers close a connection. They suggest that proxy servers
should read forever when errors occur, rather than terminating the
connection. Doing so not only avoids revealing a specific timeout
value, but also lets the server close the connection with consistent
TCP flags in the non-error case.

8 RELATEDWORK
There has been much work on the traffic analysis of Shadow-
socks [4, 12, 28, 57–59]. Some works assume a more powerful ad-
versary than what we observed in practice. For example, Zeng et al.
assume that the adversary considers the DNS behavior of hosts
when building its detection model [57]. Many proof-of-concept
tools to detect Shadowsocks traffic have been developed. Zhixin
Wang proposed an attack based on the high entropy of the first
few packets [23]. Madeye used the distribution of packet lengths to
identify Shadowsocks and ShadowsocksR traffic [31]. In addition,
Wang et al. [51, §5] demonstrated that entropy-based traffic anal-
ysis could accurately identify circumvention protocols like obfs3,
obfs4, and FTE.

Many studies and reports empirically show that the GFW de-
ploys active probing techniques to discover censorship circumven-
tion tools. The known targeted protocols include Tor [13, 52, 56],
obfs2 [55], VPN Gate [34], and other VPN services [24]. Winter
et al. [56] studied how GFW discovered Tor relays by active probing
as early as 2012. Dunna et al. [13] revisited active probing against
Tor in 2018. Ensafi et al. [14] fingerprinted the GFW’s probes target-
ing different protocols and inferred the underlying infrastructure
of the probing machines. The developers of V2Ray reported that
V2Ray servers have experienced replay attacks since as early as
2017 [39]. To the best of our knowledge, the earliest documenta-
tion of active probing being used against Shadowsocks was in June
2019 [5].

Many theoretical active-probing attacks and defenses have been
proposed [2, 8, 10, 15, 33, 35–37]. Most notably, Frolov et al. [19]
identified various proxy servers using TCP flags and timing infor-
mation when a server closes a connection. Frolov andWustrow [20]
demonstrate a promising direction against active probing, namely
hiding proxies behind popular applications. This concept, known
as application fronting, has been adopted in many popular circum-
vention tools [27, 43, 49, 50].

9 FUTUREWORK
In this work, we focused on the GFW’s active probing against
Shadowsocks specifically. However, several pieces of evidence from
our observations suggest that the GFW targets active probing
against other, unknown circumvention protocols. First, as intro-
duced in Section 4.1, we were able to trigger active probes using
random data. Since other circumvention protocols, like VMess for
example, also fully encrypts their traffic, they are likely to be de-
tected, too. Second, as introduced in Section 4.2, we have discovered
new types of probes that were not received by our Shadowsocks
and OutlineVPN servers. If these probes are not directed towards
Shadowsocks, what are they directed towards? Third, in June 2020,
VMess was discovered to be vulnerable to active probing [2, 33, 35].
We want to test if this vulnerability has actually been exploited by
the GFW.

10 ETHICS
Censorship measurement research carries an element of risk, which
can range from having a sensitive request being logged, to legal
repercussions. We took steps to minimize risk while conducting
our measurement experiments. First, this work does not involve
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human subjects. All network traffic was generated automatically by
programs under our control. Second, although it may be low risk to
have sensitive queries observed by the censor, we tried to limit the
number of these sensitive queries. Specifically, in only one of our
experiments did we use a host in China as a Shadowsocks server.
In that experiment, we initially had the server proxy the browsing
traffic of a subset of Alexa top 1 million websites. After running the
experiment for 45 hours, we decided to remove censored websites
from the browsing list, so that the host in China would not make
connections to sensitive websites outside the firewall. Third, we
minimized the potential collateral damage of blocking by using
dedicated IP addresses for our circumvention servers. We rented
our non-censoring network hosts from a VPS provider that permits
Shadowsocks and OutlineVPN, and in fact even offers automatic
installation of OutlineVPN.

11 CONCLUSION
In this study, we revealed and systematically studied the GFW’s lat-
est weapon against Shadowsocks. We found that the GFW detects
potential Shadowsocks traffic using the size and entropy of the first
data packet in each connection; it then sends active probes, in dif-
ferent stages, to the suspected servers. The active probes consist of
replay-based probes and random probes with varied lengths. They
are essentially different types of attacks that target vulnerabilities
in different Shadowsocks implementations. We fingerprinted the
probers and found differences relative to previous work on active
probing. A network-level side channel reveals that the probes sent
by thousands of IP addresses are very likely controlled by a set of
centralized structures.

Finally, based on our gained understanding, we presented a tem-
porary workaround that mitigates the GFW’s traffic analysis attack.
We further discussed the essential strategies to defend against ac-
tive probing. We closely collaborated with developers to make
Shadowsocks and related tools more resistant to blocking.

RESPONSIBLE DISCLOSURE
We shared our findings and suggestions to the Shadowsocks-libev
and OutlineVPN developers. OutlineVPN released v1.1.0 in February
2020, providing an option to defend against replay of client data [26].
OutlineVPN further provided defense against replay of server data
in September 2020. In July 2020, OutlineVPN developers merged the
header and initial data into one packet, making the size of the first
packet in each connection variable [18]. The OutlineVPN developers
reported at the beginning of September 2020 that their servers had
not been blocked since these changes were made, although they
had still been intensively probed. We also shared our preliminary
findings publicly [3], which potentially led to the replay defense
feature in Shadowsocks-rust v1.8.5 [60].
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